Have a personal or library account? Click to login
Open Access
|Sep 2013

References

  1. Bakshi, G., Cao, C. and Chen, Z. (1997). Empirical performance of alternative option pricing models, The Journal of FinanceLII(5): 2003-2049.10.1111/j.1540-6261.1997.tb02749.x
  2. Bardossy, A. and Duckstein, L. (1995). Fuzzy Rule-Based Modelingwith Applications to Geophysical, Biological andEngineering Systems (Systems Engineering), CRC Press, Boca Raton, FL.
  3. Barndorff-Nielsen, O.E. (1998). Processes of normal inverse Gaussian type, Finance and Stochastics 2(1): 41-68.10.1007/s007800050032
  4. Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutschemark options, The Review ofFinancial Studies 9(1): 69-107.10.1093/rfs/9.1.69
  5. Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, Journal of Political Economy81(3): 637-659.10.1086/260062
  6. Brigo, D., Pallavicini, A. and Torresetti, R. (2007). Credit derivatives: Calibration of CDO tranches with the dynamical GPL model, Risk Magazine 20(5): 70-75.10.2139/ssrn.900549
  7. Davis, M. (2001). Mathematics of financial markets, in B. Engquist and W. Schmid (Eds.), MathematicsUnlimited-2001 & Beyond, Springer, Berlin, pp. 361-380.10.1007/978-3-642-56478-9_16
  8. Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems-Theory and Applications, Academic Press, New York, NY.
  9. El Karoui, N. and Rouge, R. (2000). Pricing via utility maximization and entropy, Mathematical Finance10(2): 259-276.10.1111/1467-9965.00093
  10. Frittelli, M. (2000). The minimal entropy martingale measure and the valuation problem in incomplete markets, MathematicalFinance 10(1): 39-52.10.1111/1467-9965.00079
  11. Fujiwara, T. and Miyahara, Y. (2003). The minimal entropy martingale measures for geometric Levy processes, Financeand Stochastics 7(1): 509-531.10.1007/s007800200097
  12. Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Springer-Verlag, New York, NY.10.1007/978-0-387-21617-1
  13. Hull, J.C. (1997). Options, Futures and Other Derivatives, Prentice Hall, Upper Saddle River, NJ.
  14. Jacod, J. and Shiryaev, A. (1987). Limit Theorems for StochasticProcesses, Springer-Verlag, Berlin/Heidelberg/New York, NY.10.1007/978-3-662-02514-7
  15. Kou, S.G. (2002). A jump-diffusion model for option pricing, Management Science 48(8): 1086-1101.10.1287/mnsc.48.8.1086.166
  16. Kou, S.G. and Wang, H. (2004). Option pricing under a double exponential jump diffusion model, Management Science50(9): 1178-1192. 10.1287/mnsc.1030.0163
  17. Li, C. and Chiang, T.-W. (2012). Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence, International Journal of AppliedMathematics and Computer Science 22(4): 787-800, DOI: 10.2478/v10006-012-0058-x.10.2478/v10006-012-0058-x
  18. Madan, D.B. and Seneta, E. (1990). The variance gamma (v.g.) model for share market returns, The Journal of Business63(4): 511-524.
  19. Merton, R. (1976). Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics3(1): 125-144.10.1016/0304-405X(76)90022-2
  20. Miyahara, Y. (2004). A note on Esscher transformed martingale measures for geometric Levy processes, Discussion Papersin Economics, No. 379, Nagoya City University, Nagoya, pp. 1-14.
  21. Nowak, P. (2011). Option pricing with Levy process in a fuzzy framework, in K.T. Atanassov, W. Homenda, O.Hryniewicz, J. Kacprzyk, M. Krawczak, Z. Nahorski, E. Szmidt and S. Zadrożny (Eds.), Recent Advances in FuzzySets, Intuitionistic Fuzzy Sets, Generalized Nets and RelatedTopics, Polish Academy of Sciences, Warsaw, pp. 155-167.
  22. Nowak, P., Nycz, P. and Romaniuk, M. (2002). On selection of the optimal stochastic model in the option pricing via Monte Carlo methods, in J. Kacprzyk and J. Węglarz (Eds.), Modelling and Optimization-Methods and Applications, Exit, Warsaw, pp. 59-70, (in Polish).
  23. Nowak, P. and Romaniuk, M. (2010). Computing option price for Levy process with fuzzy parameters, European Journalof Operational Research 201(1): 206-210.10.1016/j.ejor.2009.02.009
  24. Shiryaev, A.N. (1999). Essential of Stochastic Finance, World Scientific Publishing, Singapore.10.1142/3907
  25. Ssebugenyi, C.S. (2011). Using the minimal entropy martingale measure to valuate real options in multinomial lattices, AppliedMathematical Sciences 67(5): 3319-3334.
  26. Wu, H.-C. (2004). Pricing European options based on the fuzzy pattern of Black-Scholes formula, Computers & OperationsResearch 31(7): 1069-1081.10.1016/S0305-0548(03)00065-0
  27. Wu, H.-C. (2007). Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options, Applied Mathematics and Computation185(1): 136-146. 10.1016/j.amc.2006.07.015
  28. Xu, W.D., Wu, C.F. and Li, H.Y. (2011). Foreign equity option pricing under stochastic volatility model with double jumps, Economic Modeling 28(4): 1857-1863.10.1016/j.econmod.2011.03.016
  29. Yoshida, Y. (2003). The valuation of European options in uncertain environment, European Journal of OperationalResearch 145(1): 221-229.10.1016/S0377-2217(02)00209-6
  30. Zadeh, L.A. (1965). Fuzzy sets, Information and Control8(47): 338-353.10.1016/S0019-9958(65)90241-X
  31. Zhang, L.-H., Zhang, W.-G., Xu, W.-J. and Xiao, W.-L. (2012). The double exponential jump diffusion model for pricing European options under fuzzy environments, EconomicModelling 29(3): 780-786.10.1016/j.econmod.2012.02.005
  32. Zhou, C. (2002). Fuzzy-arithmetic-based Lyapunov synthesis in the design of stable fuzzy controllers: A computing-with-words approach, International Journalof Applied Mathematics and Computer Science12(3): 411-421.
DOI: https://doi.org/10.2478/amcs-2013-0046 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 613 - 622
Published on: Sep 30, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Piotr Nowak, Maciej Romaniuk, published by Sciendo
This work is licensed under the Creative Commons License.