Bakshi, G., Cao, C. and Chen, Z. (1997). Empirical performance of alternative option pricing models, The Journal of FinanceLII(5): 2003-2049.10.1111/j.1540-6261.1997.tb02749.x
Bardossy, A. and Duckstein, L. (1995). Fuzzy Rule-Based Modelingwith Applications to Geophysical, Biological andEngineering Systems (Systems Engineering), CRC Press, Boca Raton, FL.
Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutschemark options, The Review ofFinancial Studies 9(1): 69-107.10.1093/rfs/9.1.69
Brigo, D., Pallavicini, A. and Torresetti, R. (2007). Credit derivatives: Calibration of CDO tranches with the dynamical GPL model, Risk Magazine 20(5): 70-75.10.2139/ssrn.900549
Davis, M. (2001). Mathematics of financial markets, in B. Engquist and W. Schmid (Eds.), MathematicsUnlimited-2001 & Beyond, Springer, Berlin, pp. 361-380.10.1007/978-3-642-56478-9_16
Frittelli, M. (2000). The minimal entropy martingale measure and the valuation problem in incomplete markets, MathematicalFinance 10(1): 39-52.10.1111/1467-9965.00079
Fujiwara, T. and Miyahara, Y. (2003). The minimal entropy martingale measures for geometric Levy processes, Financeand Stochastics 7(1): 509-531.10.1007/s007800200097
Kou, S.G. and Wang, H. (2004). Option pricing under a double exponential jump diffusion model, Management Science50(9): 1178-1192. 10.1287/mnsc.1030.0163
Li, C. and Chiang, T.-W. (2012). Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence, International Journal of AppliedMathematics and Computer Science 22(4): 787-800, DOI: 10.2478/v10006-012-0058-x.10.2478/v10006-012-0058-x
Merton, R. (1976). Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics3(1): 125-144.10.1016/0304-405X(76)90022-2
Miyahara, Y. (2004). A note on Esscher transformed martingale measures for geometric Levy processes, Discussion Papersin Economics, No. 379, Nagoya City University, Nagoya, pp. 1-14.
Nowak, P. (2011). Option pricing with Levy process in a fuzzy framework, in K.T. Atanassov, W. Homenda, O.Hryniewicz, J. Kacprzyk, M. Krawczak, Z. Nahorski, E. Szmidt and S. Zadrożny (Eds.), Recent Advances in FuzzySets, Intuitionistic Fuzzy Sets, Generalized Nets and RelatedTopics, Polish Academy of Sciences, Warsaw, pp. 155-167.
Nowak, P., Nycz, P. and Romaniuk, M. (2002). On selection of the optimal stochastic model in the option pricing via Monte Carlo methods, in J. Kacprzyk and J. Węglarz (Eds.), Modelling and Optimization-Methods and Applications, Exit, Warsaw, pp. 59-70, (in Polish).
Nowak, P. and Romaniuk, M. (2010). Computing option price for Levy process with fuzzy parameters, European Journalof Operational Research 201(1): 206-210.10.1016/j.ejor.2009.02.009
Ssebugenyi, C.S. (2011). Using the minimal entropy martingale measure to valuate real options in multinomial lattices, AppliedMathematical Sciences 67(5): 3319-3334.
Wu, H.-C. (2004). Pricing European options based on the fuzzy pattern of Black-Scholes formula, Computers & OperationsResearch 31(7): 1069-1081.10.1016/S0305-0548(03)00065-0
Wu, H.-C. (2007). Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options, Applied Mathematics and Computation185(1): 136-146. 10.1016/j.amc.2006.07.015
Yoshida, Y. (2003). The valuation of European options in uncertain environment, European Journal of OperationalResearch 145(1): 221-229.10.1016/S0377-2217(02)00209-6
Zhang, L.-H., Zhang, W.-G., Xu, W.-J. and Xiao, W.-L. (2012). The double exponential jump diffusion model for pricing European options under fuzzy environments, EconomicModelling 29(3): 780-786.10.1016/j.econmod.2012.02.005
Zhou, C. (2002). Fuzzy-arithmetic-based Lyapunov synthesis in the design of stable fuzzy controllers: A computing-with-words approach, International Journalof Applied Mathematics and Computer Science12(3): 411-421.