Have a personal or library account? Click to login

Controlling a non-homogeneous Timoshenko beam with the aid of the torque

Open Access
|Sep 2013

References

  1. Avdonin, S.A. and Ivanov, S.A. (1995). Families of Exponentials, Cambridge University Press, Cambridge.
  2. Avdonin, S. and Moran, W. (2001). Ingham-type inequalities and Riesz bases of divided differences, InternationalJournal of Applied Mathematics Computer Science11(4): 803-820.
  3. Kaczorek, T. (2012). Existence and determination of the set of Metzler matrices for given stable polynomials, InternationalJournal of Applied Mathematics Computer Science22(2): 389-399, DOI: 10.2478/v10006-012-0029-2.10.2478/v10006-012-0029-2
  4. Kato, T. (1966). Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.10.1007/978-3-642-53393-8
  5. Krabs,W. and Sklyar, G.M. (2002). On Controllability of LinearVibrations, Nova Science Publishers Inc., Huntington, NY.
  6. Levin, B. (1961). On Riesz bases of exponential in l2, ZapiskiMatematicheskogo Otdieleniya Fiziko-matematicheskogoFakul’teta Kharkovskogo Universiteta 27(4): 39-48.
  7. Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, InternationalJournal of Applied Mathematics Computer Science22(3): 533-538, DOI: 10.2478/v10006-012-0040-7.10.2478/v10006-012-0040-7
  8. Paley, R.E.A.C. and Wiener, N. (1934). Fourier Transformsin the Complex Domain, American Mathematical Society, Providence, RI.
  9. Respondek, J.S. (2008). Approximate controllability of infinite dimensional systems of the n-th order, InternationalJournal of Applied Mathematics Computer Science18(2): 199-212, DOI: 10.2478/v10006-008-0018-7.10.2478/v10006-008-0018-7
  10. Russell, D.L. (1967). Non-harmonic Fourier series in control theory of distributed parameter system, Journal of MathematicalAnalysis and Applications (18): 542-560.10.1016/0022-247X(67)90045-5
  11. Sklyar, G.M. and Rezounenko, A.V. (2003). Strong asymptotic stability and constructing of stabilizing control, MatematitcheskajaFizika, Analiz i Geometria 10(4): 569-582.
  12. Sklyar, G.M. and Szkibiel, G. (2007). Spectral properties of non-homogeneous Timoshenko beam and its controllability, Mekhanika Tverdogo Tela (37): 175-183.
  13. Sklyar, G.M. and Szkibiel, G. (2008a). Controllability from rest to arbitrary position of non-homogeneous Timoshenko beam, Matematitcheskij Analiz i Geometria 4(2): 305-318.
  14. Sklyar, G.M. and Szkibiel, G. (2008b). Spectral properties of non-homogeneous Timoshenko beam and its rest to rest controllability, Journal of Mathematical Analysis and Applications (338): 1054-1069.10.1016/j.jmaa.2007.05.058
  15. Sklyar, G.M. and Szkibiel, G. (2012). Approximation of extremal solution of non-Fourier moment problem and optimal control for non-homogeneous vibrating systems, Journal of Mathematical Analysis and Applications (387): 241-250.10.1016/j.jmaa.2011.08.069
  16. Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semilinear distributed hyperbolic systems, International Journal of AppliedMathematics Computer Science 17(4): 437-448, DOI: 10.2478/v10006-007-0035-y.10.2478/v10006-007-0035-y
DOI: https://doi.org/10.2478/amcs-2013-0044 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 587 - 598
Published on: Sep 30, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Grigory M. Sklyar, Grzegorz Szkibiel, published by Sciendo
This work is licensed under the Creative Commons License.