Antonious, P. (1989). Determination of Biokinetic Coefficientsfor Nitrification in the Activated Sludge Process, Master’s thesis, University of Florida, Gainesville, FL.
Arminski, K. and Zubowicz, T. (2011). Multispecies quality model for drinking water distribution system. InSIK technical report v.2.0., Technical report, Gda´nsk University of Technology, Gda´nsk.
Bousher, A., Brimblecombe, P. and Midgley, D. (1986). Rate of hypobromite formation in chlorinated seawater, WaterResearch 20(7): 865-870.10.1016/0043-1354(86)90174-0
Brdys, M. (2010). Intelligent monitoring and control for critical infrastructure systems and application to integrated wastewater treatment systems, 12th IFAC Symposiumon Large Scale Systems: Theory and Applications,Lille, France, Vol. 9, pp. 2-12, DOI: 10.3182/20100712-3-FR-2020.00003.10.3182/20100712-3-FR-2020.00003
Brdys, M. and Ulanicki, B. (1994). Operational Control ofWater Systems: Structures, Algorithms and Applications, Prentice Hall Int, Upper Saddle River, NJ.
Chowdhury, S., Champagne, P. and McLellan, P.J. (2009). Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review, Science of the Total Environment 407(14): 4189-4206, DOI:10.1016/j.scitotenv.2009.04.006.10.1016/j.scitotenv.2009.04.006
Clark, R. M., and Sivaganesan, M. (2002). Predicting chlorine residuals in drinking water: Second order model, Journal of Water Resources Planning and Management128(2): 152-151.10.1061/(ASCE)0733-9496(2002)128:2(152)
Deborae, M. and von Guten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment kintetics and mechanisms: A critical review, Water Research 42(1-2): 13-51, DOI:10.1016/j.watres.2007.07.025.10.1016/j.watres.2007.07.025
Digiano, F. and Zhang, W. (2008). Uncertainty analysis in a mechanistic model of bacterial regrowth in distribution system, Environmental Science & Technology38(22): 5925-5931, DOI:10.1021/es049745l.10.1021/es049745l
Duirk, S., Gombert, B., Choi, J. and L., V.R. (2002). Monochloramine loss in the presence of humic acid, Journalof Environmental Monitoring 4(1): 85-89, DOI: 10.1039/b106047n.10.1039/b106047n
EU Council Directive (1998). Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, http://eur-lex.europa.eu.
Frateur, I., Deslouis, C., Kiene, L., Levi, Y. and Tribollet, B. (1999). Free chlorine consumption induced by cast iron corrosion in drinking water distribution systems, Water Research33(8): 1781-1790.10.1016/S0043-1354(98)00369-8
Gazda, M. and Margerum, D.W. (1994). Reactions of monochloramine with br2, br-3, hobr, and obr-: Formation of bromochloramines, Inorganic Chemistry25(19): 118-123.10.1002/chin.199419013
Gray, J.E.T., Margerum, D.W. and Huffman, R.P. (1978). Chloramine equilibria and the kinetics of disproportionation in aqueous solution, in F.E. Brinckman and J.M. Bellama (Eds.), Organometals and Organometalloids:Occurrence and Fate in the Environment, ACS Books, Washington, DC, pp. 264-277.
Hammes, F., Vital, M., Egli, T., Rubulis, J. and Juhna, T. (2007). Modeling planktonic and biofilm growth of a monoculture (p. fluorescens) in drinking water, TECHNEAU Project Deliverable 5.5.9, http://www.techneau.org/fileadmin/files/Publications/Publications/Deliverables/D5.5.9.pdf
Hand, V.C. and Margerum, D.W. (1983). Kinetics and mechanisms of the decomposition of dichloramine in aqueous solution, Inorganic Chemistry22(10): 1449-1456, DOI: 10.1021/ic00152a007.10.1021/ic00152a007
Helbling, D. and VanBriesen, J. (2009). Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems, Journalof Environmental Engineering 135(10): 918-927, DOI:10.1061/(ASCE)EE.1943-7870.0000080.10.1061/(ASCE)EE.1943-7870.0000080
Jafvert, C.T. and Valentine, R.L. (1987). Dichloramine decomposition in the presence of excess ammonia, WaterResearch 21(8): 967-973.10.1016/S0043-1354(87)80015-5
Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2003). Water quality modelling for drinking water distribution systems, International Congress on Modellingand Simulation, Townsville, Australia, pp. 332-337.
Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2004). Modeling bacterial growth in drinking water: Effect of nutrients, Journal of AWWA (American WaterWorks Association) 96(5): 129-141.10.1002/j.1551-8833.2004.tb10634.x
Johnson, D.W. and Margerum, D.W. (1991). Non-metal redox kinetics: A reexamination of the mechanism of the reaction between hypochlorite and nitrite ions, Inorganic Chemistry30(25): 4845-4851.10.1021/ic00025a031
Kohpaei, A. and Sathasivan, A. (2011). Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development, Chemical Engineering Journal 171(1): 232-241, DOI:10.1016/j.cej.2011.03.034.10.1016/j.cej.2011.03.034
LeChevallier, M., Welch, N. and Smith, D.B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water, Applied and Environmental Microbiology62(7): 2201-2211.10.1128/aem.62.7.2201-2211.19961680008779557
Liu:2005a Liu, S., Taylor, J., Randall, A.A. and Dietz, J. (2005a). Nitrification modeling in chloraminated distribution systems, American Water Works Association97(10): 98-108.10.1002/j.1551-8833.2005.tb07499.x
Liu, S., Taylor, J.S. and Webb, D. (2005b). Water quality profiles during nitrification in a pilot distribution system study, Water Supply: Research and Technology-Aqua54(3): 133-145.10.2166/aqua.2005.0013
Liu, W. and Qi, S. (2010). Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination, Frontiers of EnvironmentalScience & Engineering in China 4(1): 65-72, DOI:10.1007/s11783-010-0010-y.10.1007/s11783-010-0010-y
Lu C., Biswas P., Clark, R.M. (1995). Simultaneous transport of substrates, disinfectants and microorganisms in water pipes, Water Research 29(3): 881-894.10.1016/0043-1354(94)00202-I
Łangowski, R. and Brdys, M.A. (2007). Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator, International Journal of AppliedMathematics and Computer Science 17(2): 199-216. DOI: 10.2478/v10006-007-0019-y.10.2478/v10006-007-0019-y
Margerum, D.W., Gray, E.T. and Huffman, R.P. (1978). Chlorination and the formation of N-chloro compounds in water treatment, in F.E. Brinckman and J.M. Bellama (Eds.), Organometals and Organometalloids: Occurrenceand Fate in the Environment, ACS Books, Washington, DC, pp. 278-291.
Margerum, D.W., Schurter, L.M., Hobson, J. and Moore, E.E. (1994). Water chlorination chemistry: Nonmetal redox kinetics of chloramine and nitrite ion, Environmental Science& Technology 28(2): 331-337.10.1021/es00051a021
Morris, J.C. and Isaac, R.A. (1981). A critical review of kinetic and thermodynamic constants for the aqueous chlorine-ammonia system, in R.L. Jolley, W.A. Brungs, J.A. Cotruvo, R.B. Cumming, J.S. Mattice, and V.A. Jacobs (Eds.), Water Chlorination: Environmental Impactand Health Effects, Ann Arbor Science, Ann Arbor, MI, pp. 49-62.
Muellner, M.G., Wagner, E.D., McCalla, K., Richardson, S.D., Woo, Y.T. and Plewa, M.J. (2007). Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?, Environmental Science and Technology41(2): 645-651.
Myszor, D. and Cyran, K. (2013). Mathematical modeling of molecule evolution in protocells, International Journalof Applied Mathematics of Computer Science23(1): 213-229, DOI: 10.2478/amcs-2013-0017.10.2478/amcs-2013-0017
Nokes, C., Fenton, E. and Randal, C. (1999). Modelling the formation of brominated trihalomatanes in chlorinated drinking waters, Water Research 33(17): 3557-3568.10.1016/S0043-1354(99)00081-0
Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, InternationalJournal of Applied Mathematics of Computer Science22(4): 939-949, DOI: 10.2478/v10006-012-0070-1.10.2478/v10006-012-0070-1
Poduska, R.A. and Andrews, F.J. (1974). Dynamics of nitrification in the activated sludge process, 29th IndustrialWaste Conference, Lafayette, IN, USA, pp. 2599-2619.
Pope, P.G. (2006). Haloacetic Acid Formation During Chloramination:Role of Environmental Conditions, Kinetics, andHaloamine Chemistry, Ph.D. thesis, University of Texas at Austin, TX.
Sadiq, R. and Rodriguez, R.J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review, Science of the Total Environment321(1-3): 21-46.10.1016/j.scitotenv.2003.05.00115050383
Shang, F. and Rossman, L. (2011). Epanet multi-specie extention user‘s manual, EPA/600/S-07/021, National Risk Management Research Laboratory, National Homeland Security Research Center Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH.
Shang, F., Uber, J. and Rossman, L. (2008). Modeling reaction and transport of multiple species in water distribution systems, Environmental Science & Technology42(3): 808-814, DOI: 10.1021/es072011z.10.1021/es072011z
Trofe, T.W., Inman, J.G.W. and Johnson, J.D. (1980). Kinetics of monochloramine decomposition in the presence of bromide, Environmental Science & Technology14(5): 544-549, DOI: 10.1021/es60165a008.10.1021/es60165a008
van der Kooij, D., Vrouwenvelder, H. and Veenendaal, H. (1995). Kintetic aspects of biofilm formation on surfaces exposed to drinking water, Water Science and Technology32(8): 61-65, DOI:10.1016/0273-1223(96)00008-X.10.1016/0273-1223(96)00008-X
Vikesland, P.J., Ozekin, K. and Valentine, R. (2001). Monochloramine decay in model and distribution system waters, Water Research 35(7): 1766-1776.10.1016/S0043-1354(00)00406-1
Williamson, K. and McCarty, P. (1976). Verification studies of the biofilm model for bacterial substrate utilization, Journal of Water Pollution Control Federation48(2): 1281-289.
Zhang,W.,Miller, C. and DiGiano, F. (2004). Bacterial regrowth model for water distribution systems incorporating alternating split-operator solution technique, Journal ofEnvironmental Engineering 130(3): 932-941, DOI: 10.1060/(ASCE)0733-39372(2004)130:9(932).