Have a personal or library account? Click to login

A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets

Open Access
|Sep 2013

References

  1. Capobianco, E. (2002). Hammerstein system representation of financial volatility processes, The European Physical JournalB: Condensed Matter 27(2): 201-211.10.1140/epjb/e20020154
  2. Chen, H.-F. (2004). Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEETransactions on Automatic Control 49(10): 1641-1649.10.1109/TAC.2004.835358
  3. Chen, H.-F. (2010). Recursive identification for stochastic Hammerstein systems, in F. Giri and E.W. Bai (Eds.), Block-oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer-Verlag, Berlin/Heidelberg, pp. 69-87.10.1007/978-1-84996-513-2_6
  4. Chen, S., Billings, S.A. and Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control50(5): 1873-1896.10.1080/00207178908953472
  5. Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, InternationalJournal of Applied Mathematics and Computer Science21(3): 423-430, DOI: 10.2478/v10006-011-0031-0.10.2478/v10006-011-0031-0
  6. Clancy, E.A., Liu, L., Liu, P. and Moyer, D.V.Z. (2012). Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models, IEEETransactions on Biomedical Engineering 59(1): 205-212.10.1109/TBME.2011.217042321968709
  7. Coca, D. and Billings, S.A. (2001). Non-linear system identification using wavelet multiresolution models, InternationalJournal of Control 74(18): 1718-1736.10.1080/00207170110089743
  8. Gallman, P. (1975). An iterative method for the identification of nonlinear systems using a Uryson model, IEEE Transactionson Automatic Control 20(6): 771-775.10.1109/TAC.1975.1101087
  9. Gomes, S.M. and Cortina, E. (1995). Some results on the convergence of sampling series based on convolution integrals, SIAM Journal on Mathematical Analysis26(5): 1386-1402.10.1137/S1052623493255096
  10. Greblicki, W. (2002). Stochastic approximation in nonparametric identification of Hammerstein systems, IEEE Transactions on Automatic Control47(11): 1800-1810.10.1109/TAC.2002.804483
  11. Greblicki, W. (2004). Hammerstein system identification with stochastic approximation, International Journal of Modellingand Simulation 24(2): 131-138.10.1080/02286203.2004.11442297
  12. Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein system using kernel regression estimates, IEEE Transactions on Automatic Control 31(1): 74-77.10.1109/TAC.1986.1104096
  13. Greblicki, W. and Pawlak, M. (1987). Necessary and sufficient consistency conditions for a recursive kernel regression estimate, Journal of Multivariate Analysis 23(1): 67-76.10.1016/0047-259X(87)90178-3
  14. Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems, Journal of theFranklin Institute 326(4): 461-481.10.1016/0016-0032(89)90045-8
  15. Greblicki, W. and Pawlak, M. (2008). Nonparametric SystemIdentification, Cambridge University Press, New York, NY.10.1017/CBO9780511536687
  16. Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, NY.10.1007/b97848
  17. Hasiewicz, Z. (1999). Hammerstein system identification by the Haar multiresolution approximation, International Journalof Adaptive Control and Signal Processing 13(8): 697-717.10.1002/(SICI)1099-1115(199912)13:8<;691::AID-ACS591>3.0.CO;2-7
  18. Hasiewicz, Z. (2000). Modular neural networks for non-linearity recovering by the Haar approximation, Neural Networks13(10): 1107-1133.10.1016/S0893-6080(00)00055-1
  19. Hasiewicz, Z., Pawlak, M. and Śliwiński, P. (2005). Non-parametric identification of non-linearities in block-oriented complex systems by orthogonal wavelets with compact support, IEEE Transactions on Circuits andSystems I: Regular Papers 52(1): 427-442.10.1109/TCSI.2004.840288
  20. Hasiewicz, Z. and Śliwiński, P. (2002). Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, International Journal of Systems Science33(14): 1121-1144.10.1080/0020772021000064171
  21. Jyothi, S.N. and Chidambaram, M. (2000). Identification of Hammerstein model for bioreactors with input multiplicities, Bioprocess Engineering 23(4): 323-326.10.1007/s004499900141
  22. Krzyżak, A. (1986). The rates of convergence of kernel regression estimates and classification rules, IEEE Transactionson Information Theory 32(5): 668-679.10.1109/TIT.1986.1057226
  23. Krzyżak, A. (1992). Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation, IEEE Transactions on InformationTheory 38(4): 1323-1338.10.1109/18.144711
  24. Krzyżak, A. (1993). Identification of nonlinear block-oriented systems by the recursive kernel estimate, Journal of theFranklin Institute 330(3): 605-627.10.1016/0016-0032(93)90101-Y
  25. Krzyżak, A. and Pawlak, M. (1984). Distribution-free consistency of a nonparametric kernel regression estimate and classification, IEEE Transactions on Information Theory30(1): 78-81.10.1109/TIT.1984.1056842
  26. Kukreja, S., Kearney, R. and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR, IEEE Transactionson Biomedical Engineering 52(3): 431-444.10.1109/TBME.2004.84328615759573
  27. Kushner, H.J. and Yin, G.G. (2003). Stochastic Approximationand Recursive Algorithms and Applications, 2nd Edn., Stochastic Modelling and Applied Probability, Springer, New York, NY.
  28. Lortie, M. and Kearney, R.E. (2001). Identification of time-varying Hammerstein systems from ensemble data, Annals of Biomedical Engineering 29(2): 619-635.10.1114/1.138042111501626
  29. Mallat, S.G. (1998). A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA.10.1016/B978-012466606-1/50008-8
  30. Marmarelis, V.Z. (2004). Nonlinear Dynamic Modeling ofPhysiological Systems, IEEE Press Series on Biomedical Engineering, Wiley-IEEE Press, Piscataway, NJ.10.1002/9780471679370
  31. Nordsjo, A. and Zetterberg, L. (2001). Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processing 49(3): 577-592.10.1109/78.905884
  32. Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, International Journal of Applied Mathematicsand Computer Science 22(1): 225-237, DOI: 10.2478/v10006-012-0017-6.10.2478/v10006-012-0017-6
  33. Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis, IEEETransactions on Circuits and Systems I: Fundamental Theoryand Applications 45(9): 945-961.10.1109/81.721260
  34. Pawlak, M., Rafajłowicz, E. and Krzyżak, A. (2003). Postfiltering versus prefiltering for signal recovery from noisy samples, IEEE Transactions on Information Theory49(12): 3195-3212.10.1109/TIT.2003.820013
  35. Rutkowski, L. (1984). On nonparametric identification with prediction of time-varying systems, IEEE Transactions onAutomatic Control 29(1): 58-60.10.1109/TAC.1984.1103377
  36. Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on NeuralNetworks 15(3): 576 - 596.10.1109/TNN.2004.82612715384547
  37. Saeedi, H., Mollahasani, N., Moghadam, M.M. and Chuev, G.N. (2011). An operational Haar wavelet method for solving fractional Volterra integral equations, InternationalJournal of Applied Mathematics and Computer Science21(3): 535-547, DOI: 10.2478/v10006-011-0042-x.10.2478/v10006-011-0042-x
  38. Sansone, G. (1959). Orthogonal Functions, Interscience, New York, NY.
  39. Serfling, R.J. (1980). Approximation Theorems of MathematicalStatistics, Wiley, New York, NY.10.1002/9780470316481
  40. Skubalska-Rafajłowicz, E. (2001). Pattern recognition algorithms based on space-filling curves and orthogonal expansions, IEEE Transactions on Information Theory47(5): 1915-1927. 10.1109/18.930927
  41. Śliwiński, P. (2010). On-line wavelet estimation of Hammerstein system nonlinearity, International Journal of AppliedMathematics and Computer Science 20(3): 513-523, DOI: 10.2478/v10006-010-0038-y. 10.2478/v10006-010-0038-y
  42. Śliwiński, P. (2013). Nonlinear System Identification byHaar Wavelets, Lecture Notes in Statistics, Vol. 210, Springer-Verlag, Heidelberg.
  43. Stone, C.J. (1980). Optimal rates of convergence for nonparametric regression, Annals of Statistics8(6): 1348-1360.10.1214/aos/1176345206
  44. Szego, G. (1974). Orthogonal Polynomials, 3rd Edn., American Mathematical Society, Providence, RI.
  45. Van der Vaart, A. (2000). Asymptotic Statistics, Cambridge University Press, Cambridge.
  46. Vörös, J. (2003). Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones, IEEE Transactions on Automatic Control48(12): 2203-2206.10.1109/TAC.2003.820146
  47. Walter, G.G. and Shen, X. (2001). Wavelets and Other OrthogonalSystems With Applications, 2nd Edn., Chapman & Hall, Boca Raton, FL.
  48. Westwick, D.T. and Kearney, R.E. (2003). Identification ofNonlinear Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley-IEEE Press, Piscataway, NJ.
  49. Wheeden, R. L. and Zygmund, A. (1977). Measure and Integral:An Introduction to Real Analysis, Pure and Applied Mathematics, Marcel Dekker Inc., New York, NY.
  50. Zhou, D. and DeBrunner, V.E. (2007). Novel adaptive nonlinear predistorters based on the direct learning algorithm, IEEETransactions on Signal Processing 55(1): 120-133. 10.1109/TSP.2006.882058
DOI: https://doi.org/10.2478/amcs-2013-0039 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 507 - 520
Published on: Sep 30, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Przemysław Śliwiński, Zygmunt Hasiewicz, Paweł Wachel, published by Sciendo
This work is licensed under the Creative Commons License.