Bagley, R. and Calico, R. (1991). Fractional order state equations for the control of viscoelastically damped structures, Journal of Guidance, Control, and Dynamics14(2): 304-311.10.2514/3.20641
Boroujeni, E.A. and Momeni, H.R. (2012). Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, Signal Processing92(10): 2365-2370.10.1016/j.sigpro.2012.02.009
Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space observers for chaotic synchronization and secure communication, IEEETransactions on Circuits and Systems, I: FundamentalTheory and Applications 49(3): 345-349.10.1109/81.989169
Caponetto, R., Dongola, G., Fortuna, L. and Petráš, I. (2010). Fractional Order Systems: Modeling and Control Applications, World Scientific Series on Nonlinear Science, Series A, World Scientific, Singapore.10.1142/7709
Chen, Y., Ahn, H. and Podlubny, I. (2006). Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing86(10): 2611-2618.10.1016/j.sigpro.2006.02.011
Chen, Y., Vinagre, B.M. and Podlubny, I. (2004). Fractional order disturbance observer for robust vibration suppression, Nonlinear Dynamics 38(1): 355-367.10.1007/s11071-004-3766-4
Chilali, M., Gahinet, P. and Apkarian, P. (1999). Robust pole placement in LMI regions, IEEE Transactions on AutomaticControl 44(12): 2257-2270.10.1109/9.811208
Dadras, S. and Momeni, H. (2011a). A new fractional order observer design for fractional order nonlinear systems, ASME 2011 International Design Engineering TechnicalConference & Computers and Information in EngineeringConference, Washington, DC, USA, pp. 403-408.10.1115/DETC2011-48861
Dadras, S. and Momeni, H.R. (2011b). Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems, IEEE Conference on Decision & Control,Orlando, FL, USA, pp. 6925-6930.10.1109/CDC.2011.6161100
Darouach, M. (2000). Existence and design of functional observers for linear systems, IEEE Transactions on AutomaticControl 45(5): 940-943.10.1109/9.855556
Darouach, M., Zasadzinski, M. and Xu, S. (1994). Full-order observers for linear systems with unknown inputs, IEEETransactions on Automatic Control 39(3): 606-609.10.1109/9.280770
Delshad, S.S., Asheghan, M.M. and Beheshti, M.M. (2011). Synchronization of n-coupled incommensurate fractional-order chaotic systems with ring connection, Communications in Nonlinear Science and NumericalSimulation 16(9): 3815-3824.10.1016/j.cnsns.2010.12.035
Deng, W. (2007). Short memory principle and a predictor-corrector approach for fractional differential equations, Journal of Computational and Applied Mathematics206(1): 174-188.10.1016/j.cam.2006.06.008
Dorckák, L. (1994). Numerical models for simulation the fractional-order control systems, Technical Report UEF-04-94, Slovak Academy of Sciences, Kosice.
Engheta, N. (1996). On fractional calculus and fractional multipoles in electromagnetism, IEEE Transactions on Antennasand Propagation 44(4): 554-566.10.1109/8.489308
Farges, C., Moze, M. and Sabatier, J. (2010). Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica 46(10): 1730-1734.10.1016/j.automatica.2010.06.038
Kaczorek, T. (2011a). Selected Problems of Fractional SystemsTheory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin.10.1007/978-3-642-20502-6
Kaczorek, T. (2011b). Singular fractional linear systems and electrical circuits, International Journal of Applied Mathematicsand Computer Science 21(2): 379-384, DOI: 10.2478/v10006-011-0028-8.10.2478/v10006-011-0028-8
Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theoryand Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam.
Lu, J. and Chen, Y. (2010). Robust stability and stabilization of fractional-order interval systems with the fractional-order α: The 0 < α < 1 case, IEEE Transactions on AutomaticControl 55(1): 152-158.10.1109/TAC.2009.2033738
Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing, IEEEInternational Conference on Systems, Man, Cybernetics,Lille, France, pp. 963-968.
Matignon, D. (1998). Generalized fractional differential and difference equations: Stability properties and modelling issues, Mathematical Theory of Networks and SystemsSymposium, Padova, Italy, pp. 503-506.
Matignon, D. and Andréa-Novel, B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Mathematical Theory ofNetworks and Systems Symposium, Lille, France, pp. 952-956.
Matignon, D. and Andréa-Novel, B. (1997). Observer-based for fractional differential systems, IEEE Conference on Decisionand Control, San Diego, CA, USA, pp. 4967-4972.
Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-order Systems and Controls: Fundamentalsand Applications, Springer, Berlin.10.1007/978-1-84996-335-0
Petráš, I. (2010). A note on the fractional-order Volta system, Communications in Nonlinear Science and Numerical Simulation15(2): 384-393.10.1016/j.cnsns.2009.04.009
Petráš, I., Chen, Y. and Vinagre, B. (2004). Robust stability test for interval fractional-order linear systems, in V.Blondel and A. Megretski (Eds.), Unsolved Problems in theMathematics of Systems and Control, Vol. 38, Princeton University Press, Princeton, NJ, pp. 208-210.
Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation, FractionalCalculus & Applied Analysis 5(4): 367-386.
Rossikhin, Y. and Shitikova, M. (1997). Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system, Acta Mechanica120(109): 109-125.10.1007/BF01174319
Sabatier, J., Farges, C., Merveillaut, M. and Feneteau, L. (2012). On observability and pseudo state estimation of fractional order systems, European Journal of Control18(3): 260-271.10.3166/ejc.18.260-271
Sabatier, J., Moze, M. and Farges, C. (2008). On stability of fractional order systems, IFAC Workshop on FractionalDifferentiation and Its Application, Ankara, Turkey.
Sabatier, J.,Moze, M. and Farges, C. (2010). LMI conditions for fractional order systems, Computers & Mathematics withApplications 59(5): 1594-1609.10.1016/j.camwa.2009.08.003
Sun, H., Abdelwahad, A. and Onaral, B. (1984). Linear approximation of transfer function with a pole of fractional order, IEEE Transactions on Automatic Control29(5): 441-444.10.1109/TAC.1984.1103551
Trigeassou, J., Maamri, N., Sabatier, J. and Oustaloup, A. (2011). A Lyapunov approach to the stability of fractional differential equations, Signal Processing 91(3): 437-445.10.1016/j.sigpro.2010.04.024
Trinh, H. and Fernando, T. (2012). Functional Observersfor Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 420, Springer, Berlin.
Tsui, C. (1985). A new algorithm for the design of multifunctional observers, IEEE Transactions on AutomaticControl 30(1): 89-93.10.1109/TAC.1985.1103795
Watson, J. and Grigoriadis, K. (1998). Optimal unbiased filtering via linear matrix inequalities, Systems & Control Letters35(2): 111-118. 10.1016/S0167-6911(98)00042-5