Have a personal or library account? Click to login

Design of unknown input fractional-order observers for fractional-order systems

Open Access
|Sep 2013

References

  1. Bagley, R. and Calico, R. (1991). Fractional order state equations for the control of viscoelastically damped structures, Journal of Guidance, Control, and Dynamics14(2): 304-311.10.2514/3.20641
  2. Ben-Israel, A. and Greville, T.N.E. (1974). Generalized Inverses:Theory and Applications, Wiley, New York, NY.
  3. Boroujeni, E.A. and Momeni, H.R. (2012). Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, Signal Processing92(10): 2365-2370.10.1016/j.sigpro.2012.02.009
  4. Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space observers for chaotic synchronization and secure communication, IEEETransactions on Circuits and Systems, I: FundamentalTheory and Applications 49(3): 345-349.10.1109/81.989169
  5. Caponetto, R., Dongola, G., Fortuna, L. and Petráš, I. (2010). Fractional Order Systems: Modeling and Control Applications, World Scientific Series on Nonlinear Science, Series A, World Scientific, Singapore.10.1142/7709
  6. Chen, Y., Ahn, H. and Podlubny, I. (2006). Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing86(10): 2611-2618.10.1016/j.sigpro.2006.02.011
  7. Chen, Y., Vinagre, B.M. and Podlubny, I. (2004). Fractional order disturbance observer for robust vibration suppression, Nonlinear Dynamics 38(1): 355-367.10.1007/s11071-004-3766-4
  8. Chilali, M., Gahinet, P. and Apkarian, P. (1999). Robust pole placement in LMI regions, IEEE Transactions on AutomaticControl 44(12): 2257-2270.10.1109/9.811208
  9. Dadras, S. and Momeni, H. (2011a). A new fractional order observer design for fractional order nonlinear systems, ASME 2011 International Design Engineering TechnicalConference & Computers and Information in EngineeringConference, Washington, DC, USA, pp. 403-408.10.1115/DETC2011-48861
  10. Dadras, S. and Momeni, H.R. (2011b). Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems, IEEE Conference on Decision & Control,Orlando, FL, USA, pp. 6925-6930.10.1109/CDC.2011.6161100
  11. Darouach, M. (2000). Existence and design of functional observers for linear systems, IEEE Transactions on AutomaticControl 45(5): 940-943.10.1109/9.855556
  12. Darouach, M., Zasadzinski, M. and Xu, S. (1994). Full-order observers for linear systems with unknown inputs, IEEETransactions on Automatic Control 39(3): 606-609.10.1109/9.280770
  13. Delshad, S.S., Asheghan, M.M. and Beheshti, M.M. (2011). Synchronization of n-coupled incommensurate fractional-order chaotic systems with ring connection, Communications in Nonlinear Science and NumericalSimulation 16(9): 3815-3824.10.1016/j.cnsns.2010.12.035
  14. Deng, W. (2007). Short memory principle and a predictor-corrector approach for fractional differential equations, Journal of Computational and Applied Mathematics206(1): 174-188.10.1016/j.cam.2006.06.008
  15. Dorckák, L. (1994). Numerical models for simulation the fractional-order control systems, Technical Report UEF-04-94, Slovak Academy of Sciences, Kosice.
  16. Engheta, N. (1996). On fractional calculus and fractional multipoles in electromagnetism, IEEE Transactions on Antennasand Propagation 44(4): 554-566.10.1109/8.489308
  17. Farges, C., Moze, M. and Sabatier, J. (2010). Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica 46(10): 1730-1734.10.1016/j.automatica.2010.06.038
  18. Heaviside, O. (1971). Electromagnetic Theory, 3rd Edn., Chelsea Publishing Company, New York, NY.
  19. Hilfer, R. (2001). Applications of Fractional Calculus inPhysics, World Scientific Publishing, Singapore.10.1142/3779
  20. Kaczorek, T. (2011a). Selected Problems of Fractional SystemsTheory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin.10.1007/978-3-642-20502-6
  21. Kaczorek, T. (2011b). Singular fractional linear systems and electrical circuits, International Journal of Applied Mathematicsand Computer Science 21(2): 379-384, DOI: 10.2478/v10006-011-0028-8.10.2478/v10006-011-0028-8
  22. Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theoryand Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam.
  23. Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matrices, 2nd Edn., Academic Press, Orlando, FL.
  24. Lu, J. and Chen, Y. (2010). Robust stability and stabilization of fractional-order interval systems with the fractional-order α: The 0 < α < 1 case, IEEE Transactions on AutomaticControl 55(1): 152-158.10.1109/TAC.2009.2033738
  25. Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing, IEEEInternational Conference on Systems, Man, Cybernetics,Lille, France, pp. 963-968.
  26. Matignon, D. (1998). Generalized fractional differential and difference equations: Stability properties and modelling issues, Mathematical Theory of Networks and SystemsSymposium, Padova, Italy, pp. 503-506.
  27. Matignon, D. and Andréa-Novel, B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Mathematical Theory ofNetworks and Systems Symposium, Lille, France, pp. 952-956.
  28. Matignon, D. and Andréa-Novel, B. (1997). Observer-based for fractional differential systems, IEEE Conference on Decisionand Control, San Diego, CA, USA, pp. 4967-4972.
  29. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-order Systems and Controls: Fundamentalsand Applications, Springer, Berlin.10.1007/978-1-84996-335-0
  30. Petráš, I. (2010). A note on the fractional-order Volta system, Communications in Nonlinear Science and Numerical Simulation15(2): 384-393.10.1016/j.cnsns.2009.04.009
  31. Petráš, I. (2011). Fractional-Order Nonlinear Systems: Modeling,Analysis and Simulation, Springer, Berlin.10.1007/978-3-642-18101-6
  32. Petráš, I., Chen, Y. and Vinagre, B. (2004). Robust stability test for interval fractional-order linear systems, in V.Blondel and A. Megretski (Eds.), Unsolved Problems in theMathematics of Systems and Control, Vol. 38, Princeton University Press, Princeton, NJ, pp. 208-210.
  33. Podlubny, I. (1999). Fractional Differential Equations, Academic, New York, NY.
  34. Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation, FractionalCalculus & Applied Analysis 5(4): 367-386.
  35. Rao, C. and Mitra, S. (1971). Generalized Inverse of Matricesand Its Applications, Wiley, New York, NY.
  36. Rossikhin, Y. and Shitikova, M. (1997). Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system, Acta Mechanica120(109): 109-125.10.1007/BF01174319
  37. Sabatier, J., Farges, C., Merveillaut, M. and Feneteau, L. (2012). On observability and pseudo state estimation of fractional order systems, European Journal of Control18(3): 260-271.10.3166/ejc.18.260-271
  38. Sabatier, J., Moze, M. and Farges, C. (2008). On stability of fractional order systems, IFAC Workshop on FractionalDifferentiation and Its Application, Ankara, Turkey.
  39. Sabatier, J.,Moze, M. and Farges, C. (2010). LMI conditions for fractional order systems, Computers & Mathematics withApplications 59(5): 1594-1609.10.1016/j.camwa.2009.08.003
  40. Sun, H., Abdelwahad, A. and Onaral, B. (1984). Linear approximation of transfer function with a pole of fractional order, IEEE Transactions on Automatic Control29(5): 441-444.10.1109/TAC.1984.1103551
  41. Trigeassou, J., Maamri, N., Sabatier, J. and Oustaloup, A. (2011). A Lyapunov approach to the stability of fractional differential equations, Signal Processing 91(3): 437-445.10.1016/j.sigpro.2010.04.024
  42. Trinh, H. and Fernando, T. (2012). Functional Observersfor Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 420, Springer, Berlin.
  43. Tsui, C. (1985). A new algorithm for the design of multifunctional observers, IEEE Transactions on AutomaticControl 30(1): 89-93.10.1109/TAC.1985.1103795
  44. Van Dooren, P. (1984). Reduced-order observers: A new algorithm and proof, Systems & Control Letters4(5): 243-251.10.1016/S0167-6911(84)80033-X
  45. Watson, J. and Grigoriadis, K. (1998). Optimal unbiased filtering via linear matrix inequalities, Systems & Control Letters35(2): 111-118. 10.1016/S0167-6911(98)00042-5
DOI: https://doi.org/10.2478/amcs-2013-0037 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 491 - 500
Published on: Sep 30, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Ibrahima N’Doye, Mohamed Darouach, Holger Voos, Michel Zasadzinski, published by Sciendo
This work is licensed under the Creative Commons License.