Have a personal or library account? Click to login
Random projections and Hotelling’s  T2 statistics for change detection in high-dimensional data streams Cover

Random projections and Hotelling’s T2 statistics for change detection in high-dimensional data streams

Open Access
|Jun 2013

References

  1. Achlioptas, D. (2001 ). Database friendly random projections, Proceedings of the 20th ACM SIGMOD-SIGACT-SIGARTSymposium on Principles of Database Systems, Santa Barbara,CA, USA, pp. 274-281.10.1145/375551.375608
  2. Ailon, N. and Chazelle, B. (2006). Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform, Proceedings of the 38th Annual ACM Symposium on Theoryof Computing, Seattle, WA, USA, pp. 557-563.
  3. Arriaga, R. and Vempala, S.(1999). An algorithmic theory of learning: Robust concepts and random projection, Proceedings of the 40th Annual IEEE Symposium on theFoundations of Computer Science, New York, NY, USA, pp. 616-623.
  4. Biau, G. and Devroye, L. and Lugosi, G. (2008). On the performance of clustering in Hilbert spaces IEEE Transactionson Information Theory 54(2): 781-790.10.1109/TIT.2007.913516
  5. Bodnar, O. and Schmid, W. (2005). Multivariate control charts based on a projection approach Allgemeines StatistischesArchiv 89(1): 75-93.10.1007/s101820500193
  6. Chandola, V., Banerjee, A. and Kumar, V. (2009). Anomaly detection: A survey, ACM Computing Surveys41(3): 15:1-15:58.10.1145/1541880.1541882
  7. Cramer, H. and Wold, H.(1936). Some theorems on distribution functions, Journal of the London Mathematical Society11(2): 290-295.10.1112/jlms/s1-11.4.290
  8. Cuesta-Albertos, J.A., del Barrio, E., Fraiman, R. and Matran, C. (2007). The random projection method in goodness of fit for functional data, Computational Statistics and DataAnalysis 51(10): 4814-4831.10.1016/j.csda.2006.09.007
  9. Cuturi, M., Vert, J-P. and dAspremont, A. (2009). White functionals for anomaly detection in dynamical systems, in Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams and A. Culotta (Eds.), Advances in Neural InformationProcessing Systems, Vol. 22, MIT Press, Vancouver, pp. 432-440.
  10. Dasgupta, S. and Gupta, A. (2003). An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structuresand Algorithms 22(1): 60-65.10.1002/rsa.10073
  11. Donoho D.L. (2000 ). High-dimensional data analysis: The curses and blessings of dimensionality, Technical report, Department of Statistics, Stanford University, Stanford, CA.
  12. Frankl, P. and Maehara, H. (1987). The Johnson-Lindenstrauss lemma and the sphericity of some graphs, Journal of CombinatorialTheory A 44(3): 355-362.10.1016/0095-8956(88)90043-3
  13. Forbes, C., Evans, M. and Hastings, N. and Peacock, B. (2011). Statistical Distributions, 4th Edn., John Wiley and Sons, Inc., Hoboken, NJ.
  14. Hyv¨arinen, A., Karhunen, J. and Oja, E. (2001). IndependentComponent Analysis, Wiley, New York, NY.10.1002/0471221317
  15. Hotelling, H. (1931). The generalization of Student’s ratio TheAnnals of Mathematical Statistics 2(3): 360-378.10.1214/aoms/1177732979
  16. Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimensionality, Proceedings of the 30th Annual ACM Symposium on theTheory of Computing, Dallas, TX, USA, pp. 604-613.
  17. Indyk, P. and Naor, A.(2007). Nearest neighbor preserving embeddings, ACM Transactions on Algorithms 3(3): 31:1-31:12.10.1145/1273340.1273347
  18. Jolliffe, I.T. (1986). Principal Component Analysis, Springer-Verlag, New York, NY.10.1007/978-1-4757-1904-8
  19. Johnson, W.B. and Lindenstrauss, J.(1984). Extensions of Lipschitz mapping into Hilbert space, ContemporaryMathematics 26: 189-206.10.1090/conm/026/737400
  20. Korbicz, J., Ko´scielny, J.M., Kowalczuk, Z. and Cholewa, W. (Eds.) (2004). Fault Diagnosis. Models, ArtificialIntelligence, Applications. Springer Verlag, Berlin/Heidelberg/New York, NY.10.1007/978-3-642-18615-8
  21. Lee, J.A. and Verleysen, M. (2007). Nonlinear DimensionalityReduction, Springer, New York, NY.10.1007/978-0-387-39351-3
  22. Li, P., Hastie, T.J. and Church, K.W. (2006a). Nonlinear estimators and tail bounds for dimension reduction in L1 using Cauchy random projections, Technical report, Department of Statistics, Stanford University, Stanford, CA.
  23. Li, P., Hastie, T.J. and Church, K.W. (2006b). Sub-Gaussian random projections, Technical report, Department of Statistics, Stanford University, Stanford, CA.
  24. Mason, R.L., Tracy, N.D. and Young, J.C., (1992). Multivariate control charts for individual observations, Journal ofQuality Technology 24(2): 88-95.10.1080/00224065.1992.12015232
  25. Mason, R.L. and Young, J.C. (2002). Multivariate StatisticalProcess Control with Industrial Application, SIAM, Philadelphia, PA.10.1137/1.9780898718461
  26. Mathai, A.M. and Provost, S.B. (1992). Quadratic Formsin Random Variables: Theory and Applications, Marcel Dekker, New York, NY.
  27. Matouˆsek, J.(2008). On variants of the Johnson-Lindenstrauss lemma, Random Structures and Algorithms 33(2): 142-156.10.1002/rsa.20218
  28. Milman, V.(1971). A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Functional Analysis and ItsApplications 5(4): 28-37, (English translation).
  29. Montgomery, D.C. (1996 ). Introduction to Statistical QualityControl, 3rd Edn., John Wiley and Sons, New York, NY.
  30. Qin, S.J.(2003). Statistical process monitoring: Basics and beyond Journal of Chemometrics 17(8-9): 480-502.10.1002/cem.800
  31. Rao, C.R. (1973). Linear Statistical Inference andIts Applications, John Wiley and Sons, New York, NY/London/Sydney/Toronto.
  32. Runger, G.C. (1996). Projections and the U-squared multivariate control chart, Journal of Quality Technology28(3): 313-319.10.1080/00224065.1996.11979681
  33. Runger, G., Barton, R., Del Castillo, E. and Woodall, W.H. (2007). Optimal monitoring of multivariate data for fault patterns, Journal of Quality Technology 39(2): 159-172.10.1080/00224065.2007.11917683
  34. Skubalska-Rafajłowicz, E. (2006). RBF neural network for probability density function estimation and detecting changes in multivariate processes, in L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh and J. ˙Zurada (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 4029, Springer-Verlag, Berlin/Heidelberg, pp. 133-141.10.1007/11785231_15
  35. Skubalska-Rafajłowicz, E. (2008). Random projection RBF nets for multidimensional density estimation, InternationalJournal of Applied Mathematics and Computer Science18(4): 455-464, DOI: 10.2478/v10006-008-0040-9. 10.2478/v10006-008-0040-9
  36. Skubalska-Rafajłowicz, E. (2009). Neural networks with sigmoidal activation functions dimension reduction using normal random projection, Nonlinear Analysis 71(12): e1255-e1263.10.1016/j.na.2009.01.124
  37. Skubalska-Rafajłowicz, E. (2011). Fast and efficient method of change detection in statistically monitored high-dimensional data streams, Proceedings of the 10thInternational Science and Technology Conference on Diagnosticsof Processes and Systems, Zamo´s´c, Poland, pp. 256-260.
  38. Srivastava,M.S. (2009). A review of multivariate theory for high dimensional data with fewer observations, in A. SenGupta (Ed.), Advances in Multivariate Statistical Methods, Vol. 9, World Scientific, Singapore, pp. 25-52.10.1142/9789812838247_0002
  39. Sulliva, J.H. and Woodall, W.H. (2000). Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations, IIE Transactions32(6): 537-549.10.1080/07408170008963929
  40. Tsung F. and Wang K. (2010). Adaptive charting techniques: Literature review and extensions, in H.-J. Lenz, P.-T. Wilrich and W. Schmid (Eds.), Frontiers in StatisticalQuality Control, Vol. 9, Springer-Verlag, Berlin/Heidelberg, pp. 19-35.10.1007/978-3-7908-2380-6_2
  41. Vempala, S. (2004). The Random Projection Method, American Mathematical Society, Providence, RI.10.1090/dimacs/065/01
  42. Wang, K. and Jiang, W. (2009). High-dimensional process monitoring and fault isolation via variable selection, Journalof Quality Technology 41(3): 247-258.10.1080/00224065.2009.11917780
  43. Wang, J. (2012). Geometric Structure of High-DimensionalData and Dimensionality Reduction, Higher Education Press, Beijing/Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-642-27497-8_3
  44. Wold, H. (1966). Estimation of principal components and related models by iterative least squares in P. Krishnaiaah (Ed.), Multivariate Analysis, Academic Press, New York, NY, pp. 391-420.
  45. Zorriassatine, F., Tannock, J.D.T. and O‘Brien, C. (2003). Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes, Computers and Industrial Engineering44(3): 385-408.10.1016/S0360-8352(02)00215-2
DOI: https://doi.org/10.2478/amcs-2013-0034 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 447 - 461
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Ewa Skubalska-Rafajłowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons License.