Have a personal or library account? Click to login
State estimation for a class of nonlinear systems Cover

References

  1. Abdessameud, A. and Khelfi, M.F. (2006). A variable structure observer for the control of robot manipulators, InternationalJournal of Applied Mathematics and Computer Science16(2): 189-196.
  2. Bastin, G. and Gevers, M. (1988). Stable adaptive observers for nonlinear time-varying systems, IEEE Transactions onAutomatic Control 33(7): 650-658.10.1109/9.1273
  3. Besançon, G., Voda, A. and Jouffroy, G. (2010). A note on state and parameter estimation in a Van der Pol oscillator, Automatica46(10): 1735-1738.10.1016/j.automatica.2010.06.033
  4. Besançon, G., Zhang, Q. and Hammouri, H. (2004). High gain observer based state and parameter estimation in nonlinear systems, 6th IFAC Symposium on Nonlinear Control Systems,NOLCOS, Stuttgart, Germany, pp. 325-332.
  5. Bestle, D. and Zeitz,M. (1983). Canonical form observer design for non-linear time-variable systems, International Journalof Control 38(2): 419-431.10.1080/00207178308933084
  6. Bodizs, L., Srinivasan, B. and Bonvin, D. (2011). On the design of integral observers for unbiased output estimation in the presence of uncertainty, Journal of Process Control21(3): 379-390.10.1016/j.jprocont.2010.11.015
  7. Boizot, N., Busvelle, E. and Gauthier, J. (2010). An adaptive high-gain observer for nonlinear systems, Automatica46(9): 1483-1488.10.1016/j.automatica.2010.06.004
  8. Boutat, D., Benali, A., Hammouri, H. and Busawon, K. (2009). New algorithm for observer error linearization with a diffeomorphism on the outputs, Automatica45(10): 2187-2193.10.1016/j.automatica.2009.05.030
  9. Boutayeb, M. and Aubry, D. (1999). A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE Transactions on Automatic Control44(8): 1550-1556.10.1109/9.780419
  10. Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, InternationalJournal of Applied Mathematics and Computer Science21(3): 423-430, DOI: 10.2478/v10006-011-0031-0.10.2478/v10006-011-0031-0
  11. Ciccarella, G., Mora, M. D. and Germani, A. (1993). A Luenberger-like observer for nonlinear systems, InternationalJournal of Control 57(3): 537-556.10.1080/00207179308934406
  12. Efimov, D. and Fridman, L. (2011). Global sliding-mode observer with adjusted gains for locally Lipschitz systems, Automatica 47(3): 565-570.10.1016/j.automatica.2010.12.003
  13. Farza, M., M’Saad, M., Triki, M. and Maatoug, T. (2011). High gain observer for a class of non-triangular systems, Systemsand Control Letters 60(1): 27-35.10.1016/j.sysconle.2010.09.009
  14. Feki, M. (2009). Observer-based synchronization of chaotic systems, Chaos, Solitons and Fractals 39(3): 981-990.10.1016/j.chaos.2007.03.009
  15. Fliess, M. (1990). Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Transactions on AutomaticControl 35(9): 994-1001.10.1109/9.58527
  16. Fuller, A. (1992). Guest editorial, International Journal of Control55(3): 521-527.10.1080/00207179208934252
  17. Gauthier, J. and Bornard, G. (1981). Observability for any u(t) of a class of nonlinear systems, IEEE Transactions on AutomaticControl AC-26(4): 922-926.10.1109/TAC.1981.1102743
  18. Gauthier, J., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems: Applications to bioreactors, IEEE Transactions on Automatic Control37(6): 875-880.10.1109/9.256352
  19. Ghosh, D., Saha, P. and Chowdhury, A. (2010). Linear observer based projective synchronization in delay Roessler system, Communications in Nonlinear Science and Numerical Simulation15(6): 1640-1647.10.1016/j.cnsns.2009.06.019
  20. Gille, J., Decaulne, P. and P´elegrin, M. (1988). Syst`emes asservisnon lin´eaires, 5 i`eme edn, Dunod, Paris, pp. 110-146.
  21. Gißler, J. and Schmid, M. (1990). Vom Prozeß zur Regelung. Analyse, Entwurf, Realisierung in der Praxis, 1st Edn., Siemens, Berlin/Munich, pp. 350-399.
  22. Hermann, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic ControlAC-22(5): 728-740.10.1109/TAC.1977.1101601
  23. Hui, S. and ˙Zak, S.H. (2005). Observer design for systems with unknown inputs, International Journal of Applied Mathematicsand Computer Science 15(4): 431-446.
  24. Humbert, C. and Ragot, J. (1970). Comportement asymptotique des rapports caract´eristiques dans l’optimisation quadratique, Revue A 12(1): 32-34.
  25. Ibrir, S. (2009). Adaptive observers for time-delay nonlinear systems in triangular form, Automatica45(10): 2392-2399.10.1016/j.automatica.2009.06.027
  26. Kim, Y.C., Keel, L.H. and Manabe. S.M. (2002). Controller design for time domain specifications, Proceedings of the15th Triennial World Congress, Barcelona, Spain, pp. 1230-1235.
  27. Khémiri, K., Ben Hmida, F., Ragot, J. and Gossa, M. (2011). Novel optimal recursive filter for state and fault estimation of linear stochastic systems with unknown disturbances, International Journal of Applied Mathematicsand Computer Science 21(4): 629-637, DOI: 10.2478/v10006-011-0049-3.10.2478/v10006-011-0049-3
  28. Krener, A. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Systems & Control Letters3(1): 47-52.10.1016/0167-6911(83)90037-3
  29. Luenberger, D. (1966). Observers for multivariable systems, IEEE Transactions on Automatic ControlAC-11(2): 190-197.10.1109/TAC.1966.1098323
  30. Lyapunov, A. (1892). The General Problem of Motion Stability, Annals of Mathematics Studies, Vol. 17, Princeton University Press, (translated into English in 1949).
  31. Morales, A. and Ramirez, J. (2002). A PI observer for a class of nonlinear oscillators, Physics Letters A297(3-4): 205-209.10.1016/S0375-9601(02)00191-3
  32. Naslin, P. (1960). Nouveau crit`ere d’amortissement, Automatisme5(6): 229-236.
  33. Naslin, P. (1963). Polynomes normaux et crit`ere alg´ebrique d’amortissement, Automatisme 8(6): 215-223.
  34. Raghavan, S. and Hedrick, J. (1994). Observer design for a class of nonlinear systems, International Journal of Control59(2): 515-528.10.1080/00207179408923090
  35. Röbenack, K. and Lynch, A.F. (2004). An efficient method for observer design with approximately linear error dynamics, International Journal of Control 77(7): 607-612.10.1080/00207170410001682515
  36. Röbenack, K. and Lynch, A. (2006). Observer design using a partial nonlinear observer canonical form, InternationalJournal of Applied Mathematics and Computer Science16(3): 333-343.
  37. Shuang, C., Guodong, L. and Xianyong, F. (WCE 2010). Parameters identification of nonlinear DC motor model using compound evolution algorithms, Proceedings of theWorld Congress on Engineering, London, UK, pp. 15-20.
  38. Sprott, J. (1994). Some simple chaotic flows, Physical Review E50(2): 647-650.10.1103/PhysRevE.50.R647
  39. Söffker, D., Yu, T. and M¨uller, P. (1995). State estimation of dynamical systems with nonlinearities by using proportional-integral observers, International Journal ofSystems Science 26(9): 1571-1582.10.1080/00207729508929120
  40. Tornambè, A. (1992). High-gain observers for non-linear systems, International Journal of Systems Science23(9): 1475-1489.10.1080/00207729208949400
  41. Veluvolu, K., Soh, Y. and Cao, W. (2007). Robust observer with sliding mode estimation for nonlinear uncertain systems, IET Control Theory and Applications 1(5): 1533-1540.10.1049/iet-cta:20060434
  42. Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters Archive9(2): 149-156.10.1016/0167-6911(87)90021-1
  43. Zheng, G., Boutat, D. and Barbot, J. (2009). Multi-output dependent observability normal form, Nonlinear Analysis:Theory, Methods and Applications 70(1): 404-418.10.1016/j.na.2007.12.012
DOI: https://doi.org/10.2478/amcs-2013-0029 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 383 - 394
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Benoît Schwaller, Denis Ensminger, Birgitta Dresp-Langley, José Ragot, published by University of Zielona Góra
This work is licensed under the Creative Commons License.