Have a personal or library account? Click to login
An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection Cover

An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection

Open Access
|Jun 2013

References

  1. Allen, L. (2007). An Introduction to Mathematical Biology, Prentice-Hall, Englewood Cliffs, NJ.
  2. Anguelov, R., Lubuma, J.-S. and Shillor, M. (2009). Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems, Discrete andContinuous Dynamical Systems: Supplement 61: 34-43.
  3. Arenas, A., No, J.M. and Cortés, J. (2008). Nonstandard numerical method for a mathematical model of RSV epidemiological transmission, Computers and Mathematicswith Applications 56(3): 670-678.10.1016/j.camwa.2008.01.010
  4. Bacaer, N., Ouifki, R., Pretorius, C., Wood, R. and Williams, B. (2008). Modeling the joint epidemics of TB and HIV in a South African township, Journal of Mathematical Biology57(4): 557-593.10.1007/s00285-008-0177-z18414866
  5. Brauer, F. and Castillo-Chavez, C. (2001). Mathematical Modelsin Population Biology and Epidemiology, Springer-Verlag, New York, NY.
  6. Dimitrov, D. and Kojouharov, H. (2005). Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems, AppliedMathematics Letters18(7): 769-774.10.1016/j.aml.2004.08.011
  7. Dimitrov, D. and Kojouharov, H. (2006). Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, Journal of Computationaland Applied Mathematics 189(1): 98-108.10.1016/j.cam.2005.04.003
  8. Dimitrov, D. and Kojouharov, H. (2007). Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems, International Journal ofNumerical Analysis Modeling 4(2): 280-290.
  9. Karcz-Dul˛eba, I. (2004). Asymptotic behaviour of a discrete dynamical system generated by a simple evolutionary process, International Journal of AppliedMathematics andComputer Science 14(1): 79-90.
  10. Gumel, A., McCluskey, C. and van den Driessche, P. (2006). Mathematical study of a staged-progression HIV model with imperfect vaccine, Bulletin of Mathematical Biology68(8): 2105-2128.10.1007/s11538-006-9095-716868850
  11. Gumel, A., Patidar, K. and Spiteri, R. (2005). Asymptotically consistent nonstandard finite difference methods for solving mathematical models arising in population biology, in R. Mickens (Ed.), Applications of Nonstandard FiniteDifference Schemes, World Scientific, Singapore, pp. 385-421.
  12. Ibijola, E., Ogunrinde, R. and Ade-Ibijola, O. (2008). On the theory and applications of new nonstandard finite difference methods for the solution of initial value problems in ordinary differential equations, Advances inNatural and Applied Sciences 2(3): 214-224.
  13. Jódar, L., Villanueva, R., Arenas, A. and González, G. (2008). Nonstandard numerical methods for a mathematical model for influenza disease, Mathematics and Computers in Simulation79(3): 622-633.10.1016/j.matcom.2008.04.008
  14. Kadalbajoo, M., Patidar, K. and Sharma, K. (2006). ε-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general DDEs, Applied Mathematics and Computation 182(1): 119-139.10.1016/j.amc.2006.03.043
  15. Kouche, M. and Ainseba, B. (2010). A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation, International Journal of Applied Mathematicsand Computer Science 20(3): 601-612, DOI: 10.2478/v10006-010-0045-z.10.2478/v10006-010-0045-z
  16. Lubuma, J.-S. and Patidar, K. (2006). Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems, Journal of Computationaland Applied Mathematics 191(2): 229-238.10.1016/j.cam.2005.06.039
  17. Lubuma, J.-S. and Patidar, K. (2007a). Non-standard methods for singularly perturbed problems possessing oscillatory/layer solutions, Applied Mathematics and Computation187(2): 1147-1160.10.1016/j.amc.2006.09.011
  18. Lubuma, J.-S. and Patidar, K. (2007b). Solving singularly perturbed advection reaction equation via non-standard finite difference methods, Mathematical Methods in theApplied Sciences 30(14): 1627-1637.10.1002/mma.858
  19. Lubuma, J.-S. and Patidar, K. (2007c). ε-uniform non-standard finite difference methods for singularly perturbed nonlinear boundary value problems, Advances in MathematicalSciences and Applications 17(2): 651-665.
  20. Mickens, R. (2007). Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numerical Methodsfor Partial Differential Equations 23(3): 672-691.10.1002/num.20198
  21. Mickens, R. and Ramadhani, I. (1994). Finite-difference schemes having the correct linear stability properties for all finite step-sizes III, Computer in Mathematics with Applications27(4): 77-84.10.1016/0898-1221(94)90056-6
  22. Mickens, R. and Smith, A. (1990). Finite difference models of ordinary differential equations: Influence of denominator functions, Journal of the Franklin Institute327(1): 143-145.10.1016/0016-0032(90)90062-N
  23. Munyakazi, J. and Patidar, K. (2010). Higher order numerical methods for singularly perturbed elliptic problems, Neural,Parallel & Scientific Computations 18(1): 75-88.
  24. Patidar, K. (2005). On the use of nonstandard finite difference methods, Journal of Difference Equations and Applications11(8): 735-758.10.1080/10236190500127471
  25. Patidar, K. (2008). A robust fitted operator finite difference method for a two-parameter singular perturbation problem, Journal of Difference Equations and Applications14(12): 1197-1214.10.1080/10236190701817383
  26. Patidar, K. and Sharma, K. (2006a). Uniformly convergent nonstandard finite difference methods for singularly perturbed differential difference equations with delay and advance, International Journal for Numerical Methods inEngineering 66(2): 272-296.10.1002/nme.1555
  27. Patidar, K. and Sharma, K. (2006b). ε-uniformly convergent non-standard finite difference methods for singularly perturbed differential difference equations with small delay, Applied Mathematics and Computation175(1): 864-890.10.1016/j.amc.2005.08.006
  28. Rauh, A., Brill, M. and Günther, C. (2009). A novel interval arithmetic approach for solving differential-algebraic equations with ValEncIA-IVP, International Journal of AppliedMathematics and Computer Science 19(3): 381-397, DOI: 10.2478/v10006-009-0032-4.10.2478/v10006-009-0032-4
  29. Rauh, A., Minisini, J. and Hofer, E.P. (2009). Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties, International Journal of Applied Mathematicsand Computer Science 19(3): 425-439, DOI: 10.2478/v10006-009-0035-1.10.2478/v10006-009-0035-1
  30. Villanueva, R., Arenas, A. and Gonzalez-Parra, G. (2008). A nonstandard dynamically consistent numerical scheme applied to obesity dynamics, Journal of Applied Mathematics, Article ID 640154, DOI: 10.1155/2008/640154.10.1155/2008/640154
  31. Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, International Journal of AppliedMathematics and Computer Science 21(1): 97-107, DOI: 10.2478/v10006-011-0007-0.10.2478/v10006-011-0007-0
  32. Zhai, G. and Michel, A.M. (2004). Generalized practical stability analysis of discontinuous dynamical systems, InternationalJournal of Applied Mathematics and ComputerScience 14(1): 5-12.
DOI: https://doi.org/10.2478/amcs-2013-0027 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 357 - 372
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Hasim A. Obaid, Rachid Ouifki, Kailash C. Patidar, published by University of Zielona Góra
This work is licensed under the Creative Commons License.