Have a personal or library account? Click to login
Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations of the Hessenberg type Cover

Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations of the Hessenberg type

Open Access
|Jun 2013

References

  1. Atkinson, K. (2001). Theoretical Numerical Analysis: A FunctionalAnalysis Framework, Springer-Verlag, New York, NY.
  2. Bandrowski, B., Karczewska, A. and Rozmej, P. (2010). Numerical solutions to integral equations equivalent to differential equations with fractional time, InternationalJournal of Applied Mathematics and Computer Science20(2): 261-269, DOI: 10.2478/v10006-010-0019-1.10.2478/v10006-010-0019-1
  3. Brunner, H. (1977). Discretization of Volterra integral equations of the first kind, Mathematics of Computation31(139): 708-716.10.1090/S0025-5718-1977-0451794-6
  4. Brunner, H. (1978). Discretization of Volterra integral equations of the first kind (II), Numerische Mathematik30(2): 117-136.10.1007/BF02042940
  5. Brunner, H. (2004). Collocation Methods for Volterra Integraland Related Functional Equations, Cambridge University Press, New York, NY.10.1017/CBO9780511543234
  6. Bulatov, M.V. (1994). Transformations of differential-algebraic systems of equations, Zhurnal Vychislitel’noi Matematiki iMatematicheskoi Fiziki 34(3): 360-372.
  7. Bulatov, M.V. (2002). Regularization of degenerate integro-differential equations, Computational Mathematicsand Mathematical Physics 42(11): 1602-1608.
  8. Chistyakov, V.F. (1987). On Singular Systems of Ordinary DifferentialEquations. Lyapunov Functions and Their Applications, Siberian Publishing House NAUKA, Novosibirsk, pp. 231-239.
  9. Chistyakov, V.F. (1996). Algebro-Differential OperatorsWith Finite-Dimensional Core, Siberian Publishing House NAUKA, Novosibirsk.
  10. De Hoog, F.R. and Weiss, R. (1973a). High order methods for Volterra integral equations of the first kind, SIAM Journalon Numerical Analysis 10(4): 647-664.10.1137/0710057
  11. De Hoog, F.R. andWeiss, R. (1973b). On the solution of Volterra integral equations of the first kind, Numerische Mathematik21(1): 22-32.10.1007/BF01436183
  12. Gear, C.W. (1990). Differential algebraic equations indices and integral algebraic equations, SIAM Journal on NumericalAnalysis 27(6): 1527-1534.10.1137/0727089
  13. Hadizadeh, M., Ghoreishi, F. and Pishbin, S. (2011). Jacobi spectral solution for integral algebraic equations of index-2, Applied Numerical Mathematics 61(1): 131-148.10.1016/j.apnum.2010.08.009
  14. Hochstadt, H. (1973). Integral Equations, John Wiley, New York, NY.
  15. Kauthen, J.P. (1997). The numerical solution of Volterra integral-algebraic equations by collocation methods, Proceedingsof the 15th IMACS World Congress on ScientificComputation, Modelling and Applied Mathematics, Berlin,Germany, Vol. 2, pp. 451-456.
  16. Kauthen, J.P. (2001). The numerical solution of integral-algebraic equations of index 1 by polynomial spline collocation methods, Mathematics of Computation70(236): 1503-1514.10.1090/S0025-5718-00-01257-6
  17. Kauthen, J.-P. and Brunner, H. (1997). Continuous collocation approximations to solutions of first kind Volterra equations, Mathematics of Computation66(220): 1441-1459.10.1090/S0025-5718-97-00905-8
  18. Lamm, P.K. (2005). Full convergence of sequential local regularization methods for Volterra inverse problems, InverseProblems 21(3): 785-803.10.1088/0266-5611/21/3/001
  19. Lamm, P.K. and Scofield, T.L. (2000). Sequential predictorcorrector methods for the variable regularization of Volterra inverse problems, Inverse Problems16(2): 373-399.10.1088/0266-5611/16/2/308
  20. Saeedi, H., Mollahasani, N., Mohseni Moghadam, M. and Chuev, G.N. (2011). An operational Haar wavelet method for solving fractional Volterra integral equations, InternationalJournal of Applied Mathematics and Computer Science21(3): 535-547, DOI: 10.2478/v10006-011-0042-x.10.2478/v10006-011-0042-x
  21. Weiss, R. (1972). Numerical Procedures for Volterra IntegralEquations, Ph.D. thesis, Australian National University, Canberra.
DOI: https://doi.org/10.2478/amcs-2013-0026 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 341 - 355
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Babak Shiri, Sedaghat Shahmorad, Gholamreza Hojjati, published by University of Zielona Góra
This work is licensed under the Creative Commons License.