Have a personal or library account? Click to login
Asynchronous distributed state estimation for continuous-time stochastic processes Cover

Asynchronous distributed state estimation for continuous-time stochastic processes

Open Access
|Jun 2013

References

  1. Baranski, P., Polanczyk, M. and Strumillo, P. (2011). Fusion of data from inertial sensors, raster maps and GPS for estimation of pedestrian geographic location in urban terrain, Metrology and Measurement Systems18(1): 145-158.10.2478/v10178-011-0014-3
  2. Bar-Shalom, Y. and Li, X.R. (1993). Estimation and Tracking:Principles, Techniques, and Software, Artech House, Boston, MA.
  3. Bar-Shalom, Y. and Li, X.R. (1995). Multitarget-MultisensorTracking: Principles and Techniques, YBS Publishing, Storrs, CT.
  4. Bilenne, O. (2004). Fault detection by desynchronized Kalman filtering: Introduction to robust estimation, in P. Svensson and J. Schubert (Eds.), Proceedings of the Seventh InternationalConference on Information Fusion, Vol. I, International Society of Information Fusion, Mountain View, CA, pp. 99-106.
  5. Blackman, S. and Popoli, R. (1999). Design and Analysis ofModern Tracking Systems, Artech House, Boston, MA.
  6. Carli, R., Chiuso, A., Schenato, L. and Zampieri, S. (2008). Distributed Kalman filtering based on consensus strategies, IEEE Journal on Selected Areas in Communications26(4): 622-633.10.1109/JSAC.2008.080505
  7. Cattivelli, F. and Sayed, A. (2010). Diffusion strategies for distributed Kalman filtering and smoothing, IEEE Transactionson Automatic Control 55(9): 2069-2084.10.1109/TAC.2010.2042987
  8. Chen, B. and Tugnait, J. (2001). Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed-lag smoothing, Automatica 37(2): 239-249.10.1016/S0005-1098(00)00158-8
  9. Chen, L., Arambel, P.O. and Mehra, R.K. (2002). Estimation under unknown correlation: Covariance intersection revisited, IEEE Transactions on Automatic Control AC-47(11): 1879-1882.10.1109/TAC.2002.804475
  10. Chen, Y.-L. and Chen, B.-S. (1995). Optimal reconstruction of ARMA signals with decimated samples under corrupting noise by use of multirate Kalman filter, Circuits, Systems,Signal Processing 14(6): 771-786.10.1007/BF01204684
  11. Del Favero, S. and Zampieri, S. (2009). Distributed estimation through randomized gossip Kalman filter, Proceedings ofthe 48th IEEE Conference on Decision and Control.10.1109/CDC.2009.5400905
  12. Fitzgerald, R. (1985). Track biases and coalescence with probabilistic data association, IEEE Transactions onAerospace and Electronic Systems 21(6): 822-825.10.1109/TAES.1985.310670
  13. Fortmann, T., Bar-Shalom, Y. and Scheffe, M. (1980). Multi-target tracking using joint probabilistic data association, Proceedings of 1980 IEEE Conference onDecision and Control, Albuquerque, NM, USA, pp. 807-812.
  14. Fortmann, T., Bar-Shalom, Y. and Scheffe, M. (1983). Sonar tracking of multiple targets using joint probabilistic data association, IEEE Journal of Oceanic Engineering8(3): 173-184.10.1109/JOE.1983.1145560
  15. Hall, D.L. and Llinas, J. (1997). An introduction to multisensor data fusion, Proceedings of the IEEE 85(1): 6-23.10.1109/5.554205
  16. Hall, D. L. and Llinas, J. (2001). Handbook of Multisensor DataFusion, CRC, Boca Raton, FL.10.1201/9781420038545
  17. Julier, S. and Uhlmann, J. (1997). A non-divergent estimation algorithm in the presence of unknown correlations, Proceedingsof the American Control Conference, Albuquerque,NM, USA, pp. 2369-2373.
  18. Kalman, R. (1960). A new approach to linear filtering and prediction problems, Transactions of the ASME, Journalof Basic Engineering 82(1): 34-45.10.1115/1.3662552
  19. Karatzas, I. and Shreve, S.E. (1991). Brownian Motion andStochastic Calculus, Springer, New York, NY.
  20. Kowalczuk, Z. and Dom˙zalski, M. (2009). Asynchronous distributed state estimation based on covariance intersection, System Science 35(1): 23-30.
  21. Kowalczuk, Z. and Dom˙zalski, M. (2012a). Optimal asynchronous estimation of 2D Gaussian-Markov processes, International Journal of Systems Science43(8): 1431-1440.10.1080/00207721.2011.604737
  22. Kowalczuk, Z. and Dom˙zalski, M. (2012b). Asynchronous distributed state estimation based on a continuous-time stochastic model, International Journal of Adaptive Controland Signal Processing 26(5): 384-399.10.1002/acs.1290
  23. Kuchler, R. and Therrien, C. (2003). Optimal filtering with multirate observations, Proceedings of the 37th AsilomarConference on Signals, Systems, and Computers, PacificGrove, CA, USA, pp. 1208-1212.
  24. Liggins, M., Chong, C., Kadar, I., Alford, M., Vinnicola, V. and Thomopoulos, S. (1997). Distributed fusion architectures and algorithms for target tracking, Proceedings of the IEEE85(1): 95-107.10.1109/JPROC.1997.554211
  25. Oksendal, B. (2003). Stochastic Differential Equations: An Introductionwith Applications, Springer-Verlag, Berlin.
  26. Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks, Proceedings of the 46th IEEE Conferenceon Decision and Control, New Orleans, LA, USA, pp. 5492-5498.
  27. Olfati-Saber, R. and Shamma, J. (2005). Consensus filters for sensor networks and distributed sensor fusion, Proceedingsof the 44th IEEE Conference on Decision and Control/2005 European Control Conference (CDC-ECC 05),Seville, Spain, pp. 6698-6703.
  28. Patan, M. (2012). Distributed scheduling of sensor networks for identification of spatio-temporal processes, InternationalJournal of Applied Mathematics and Computer Science22(2): 299-311, DOI: 10.2478/v10006-012-0022-9.10.2478/v10006-012-0022-9
  29. Rao, B., Durrant-Whyte, H. and Sheen, J. (1993). A fully decentralized multi-sensor system for tracking and surveillance, International Journal of Robotics Research12(1): 20-44.10.1177/027836499301200102
  30. Ribeiro, A., Giannakis, G.B. and Roumeliotis, S. (2006). SOI-KF: Distributed Kalman filtering with low-cost communications using the sign of innovations, IEEETransactions on Signal Processing 54(12): 4782-4795.10.1109/TSP.2006.882059
  31. Rogers, L. and Williams, D. (2000). Diffusion, Markov Processesand Martingales, Vol. 2: Itˆo Calculus, Cambridge University Press, Cambridge.
  32. Speranzon, A., Fischione, C. and Johansson, K. (2006). Distributed and collaborative estimation over wireless sensor networks, Proceedings of the 45th IEEE Conferenceon Decision and Control, San Diego, CA, USA, pp. 1025-1030.
  33. Uciński, D. (2012). Sensor network scheduling for identification of spatially distributed processes, International Journal ofApplied Mathematics and Computer Science 22(1): 25-40, DOI: 10.2478/v10006-012-0002-0.10.2478/v10006-012-0002-0
  34. Xiao, L., Boyd, S. and Lall, S. (2005). A scheme for robust distributed sensor fusion based on average consensus, Proceedingsof the 4th International Symposium on InformationProcessing in Sensor Networks, Los Angeles, CA,USA, pp. 63-70.
  35. Zhang, H., Basin,M. and Skliar, M. (2007). Itˆo-Volterra optimal state estimation with continuous, multirate, randomly sampled, and delayed measurements, IEEE Transactionson Automatic Control 52(3): 401-416.10.1109/TAC.2007.892383
DOI: https://doi.org/10.2478/amcs-2013-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 327 - 339
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Zdzisław Kowalczuk, Mariusz Domżalski, published by University of Zielona Góra
This work is licensed under the Creative Commons License.