Have a personal or library account? Click to login

An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection

Open Access
|Mar 2013

References

  1. Back, A. and Tsoi, A. (1991). FIR and IIR synapses. A new neural network architectures for time series modelling, Neural Computation 3(3): 375-385.
  2. Bernstein, D. (2005). Matrix Mathematics, Princeton University Press, Princeton, NJ.
  3. Ding, S. (2008). Model-based Fault Diagnosis Techniques:Design Schemes, Algorithms, and Tools, Springer-Verlag, Berlin/Heidelberg.
  4. Elman, J. (1990). Finding structure in time, Cognitive Science14(2): 179-211.10.1207/s15516709cog1402_1
  5. Fasconi, P., Gori, M. and Soda, G. (1992). Local feedback multilayered networks, Neural Computation4(1): 120-130.10.1162/neco.1992.4.1.120
  6. Gori, M., Bengio, Y. and De Mori, R. (1989). BPS: A learning algorithm for capturing the dynamic nature of speech, InternationalJoint Conference on Neural Networks, Washington,DC, USA, pp. 417-423.
  7. Gupta, M., Liang, J. and Homma, N. (2003). Static and DynamicNeural Networks, John Wiley & Sons, Hoboken, NJ.
  8. Haykin, S. (2001). Kalman Filtering and Neural Networks, John Wiley&Sons, New York, NY.10.1002/0471221546
  9. Haykin, S. (2009). Neural Networks and Learning Machines, Prentice Hall, New York, NY.
  10. Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2012). New fault tolerant control strategies for nonlinear Takagi-Sugeno systems, International Journal of AppliedMathematics and Computer Science 22(1): 197-210, DOI: 10.2478/v10006-012-0015-8.10.2478/v10006-012-0015-8
  11. Isermann, R. (2005). Fault-Diagnosis Systems: An Introductionfrom Fault Detection to Fault Tolerance, Springer-Verlag, Heidelberg/Berlin.10.1007/3-540-30368-5_18
  12. Ivakhnenko, A. and Mueller, J. (1995). Self-organization of nets of active neurons, System Analysis Modelling Simulation20(1-2): 93-106.
  13. Jordan,M. and Bishop, C. (1997). Neural networks, in A. Tucker (Ed.), CRC Handbook of Computer Science, CRC Press, Boca Raton, FL, pp. 536-556.
  14. Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation, Proceedings of the IEEE92(3): 401-422.10.1109/JPROC.2003.823141
  15. Korbicz, J. and Kościelny, J. (Eds.) (2010). Modeling, Diagnosticsand Process Control: Implementation in the DiaSterSystem, Springer-Verlag, Berlin.10.1007/978-3-642-16653-2
  16. Korbicz, J., Kościelny, J., Kowalczuk, Z. and Cholewa,W. (Eds.) (2004). Fault Diagnosis. Models, Artificial Intelligence,Applications, Springer-Verlag, Berlin.10.1007/978-3-642-18615-8
  17. Korbicz, J. and Mrugalski, M. (2008). Confidence estimation of GMDH neural networks and its application in fault detection system, International Journal of System Science39(8): 783-800.10.1080/00207720701847745
  18. Lee, T. and Jiang, Z. (2006). On uniform global asymptotic stability of nonlinear discrete-time systems with applications, IEEE Transactions on Automatic Control51(10): 1644-1660.10.1109/TAC.2006.882770
  19. Ljung, L. (1999). System Identification: Theory for the User, Prentice Hall PTR, Upper Saddle River, NJ.
  20. Montes de Oca, S., Puig, V., Witczak, M. and Dziekan, Ł. (2012). Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter, International Journal of Applied Mathematicsand Computer Science 22(1): 161-171, DOI: 10.2478/v10006-012-0012-y.10.2478/v10006-012-0012-y
  21. Mrugalski, M. and Korbicz, J. (2007). Least mean square vs. outer bounding ellipsoid algorithm in confidence estimation of the GMDH neural networks, in B.
  22. Beliczynski, A. Dzielinski, M. Iwanowski, and B. Ribeiro (Eds.), Adaptive and Natural Computing Algorithms,Part 2, Lecture Notes in Computer Science, Vol. 4432, Physica-Verlag, Heidelberg, pp. 19-26.
  23. Mrugalski, M. and Korbicz, J. (2011). GMDH neural networks, in B. Wilamowski and J. Irwin (Eds.), The Industrial ElectronicsHandbook, 2nd Edn., Vol. 5, CRC Press, Taylor Francis Group, Boca Raton, FL, pp. 8-1-8-21.10.1201/b10604-11
  24. Mrugalski, M. and Witczak, M. (2012). State-space GMDH neural networks for actuator robust fault diagnosis, Advancesin Electrical and Computer Engineering 12(3): 65-72.10.4316/aece.2012.03010
  25. Mrugalski, M., Arinton, E. and Korbicz, J. (2003). Dynamic GMDH type neural networks, in L. Rutkowski and J.10.1007/978-3-7908-1902-1_108
  26. Kacprzyk (Eds.), Neural Networks and Soft Computing, Heidelberg, Physica-Verlag, pp. 698-703.
  27. Mrugalski, M., Witczak, M. and Korbicz, J. (2008). Confidence estimation of the multi-layer perceptron and its application in fault detection systems, Engineering Applications of ArtificialIntelligence 21(6): 895-906.10.1016/j.engappai.2007.09.008
  28. Niemann, H.H. (2012). A model-based approach to fault-tolerant control, International Journal of AppliedMathematics and Computer Science 22(1): 67-86, DOI: 10.2478/v10006-012-0005-x.10.2478/v10006-012-0005-x
  29. Noura, H., Theilliol, D., Ponsart, J. and Chamseddine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, Springer-Verlag, London.10.1007/978-1-84882-653-3
  30. Palade, V., Bocaniala, C. and Jain, L. (2006). ComputationalIntelligence in Fault Diagnosis, Springer-Verlag, London.10.1007/978-1-84628-631-5
  31. Pan, Y., Sung, S. and Lee, J. (2001). Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks, Control Engineering Practice9(8): 859-867.10.1016/S0967-0661(01)00050-8
  32. Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematicsand Computer Science 18(4): 443-454, DOI: 10.2478/v10006-008-0039-2.10.2478/v10006-008-0039-2
  33. Patton, R., Frank, P. and Clark, R. (2000). Non-linear SystemsIdentification. From Classical Approaches to Neural Networksand Fuzzy Models, Springer-Verlag, Berlin.
  34. Teixeira, B., Torres, L., Aguirre, L. and Bernstein, D. (2010). On unscented Kalman filtering with state interval constraints, Journal of Process Control 20(1): 45-57.10.1016/j.jprocont.2009.10.007
  35. Williams, R. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks, NeuralComputation 1(2): 270-280.10.1162/neco.1989.1.2.270
  36. Witczak, M. (2007). Modelling and Estimation Strategies forFault Diagnosis of Non-Linear Systems. From Analyticalto Soft Computing Approaches, Springer-Verlag, Berlin.
  37. Witczak, M., Korbicz, J., Mrugalski, M. and Patton, R. (2006). A GMDH neural network based approach to robust fault detection and its application to solve the Damadics benchmark problem, Control Engineering Practice14(6): 671-683.10.1016/j.conengprac.2005.04.007
  38. Witczak, M. and Prętki, P. (2007). Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms, International Journalof Control 80(5): 749-762.10.1080/00207170601178108
  39. Zamarreño, J. M. and Vega, P. (1998). State space neural network. Properties and application, Neural Networks11(6): 1099-1112.
DOI: https://doi.org/10.2478/amcs-2013-0013 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 157 - 169
Published on: Mar 26, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Marcin Mrugalski, published by University of Zielona Góra
This work is licensed under the Creative Commons License.