Gori, M., Bengio, Y. and De Mori, R. (1989). BPS: A learning algorithm for capturing the dynamic nature of speech, InternationalJoint Conference on Neural Networks, Washington,DC, USA, pp. 417-423.
Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2012). New fault tolerant control strategies for nonlinear Takagi-Sugeno systems, International Journal of AppliedMathematics and Computer Science 22(1): 197-210, DOI: 10.2478/v10006-012-0015-8.10.2478/v10006-012-0015-8
Isermann, R. (2005). Fault-Diagnosis Systems: An Introductionfrom Fault Detection to Fault Tolerance, Springer-Verlag, Heidelberg/Berlin.10.1007/3-540-30368-5_18
Korbicz, J. and Kościelny, J. (Eds.) (2010). Modeling, Diagnosticsand Process Control: Implementation in the DiaSterSystem, Springer-Verlag, Berlin.10.1007/978-3-642-16653-2
Korbicz, J. and Mrugalski, M. (2008). Confidence estimation of GMDH neural networks and its application in fault detection system, International Journal of System Science39(8): 783-800.10.1080/00207720701847745
Lee, T. and Jiang, Z. (2006). On uniform global asymptotic stability of nonlinear discrete-time systems with applications, IEEE Transactions on Automatic Control51(10): 1644-1660.10.1109/TAC.2006.882770
Montes de Oca, S., Puig, V., Witczak, M. and Dziekan, Ł. (2012). Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter, International Journal of Applied Mathematicsand Computer Science 22(1): 161-171, DOI: 10.2478/v10006-012-0012-y.10.2478/v10006-012-0012-y
Mrugalski, M. and Korbicz, J. (2007). Least mean square vs. outer bounding ellipsoid algorithm in confidence estimation of the GMDH neural networks, in B.
Beliczynski, A. Dzielinski, M. Iwanowski, and B. Ribeiro (Eds.), Adaptive and Natural Computing Algorithms,Part 2, Lecture Notes in Computer Science, Vol. 4432, Physica-Verlag, Heidelberg, pp. 19-26.
Mrugalski, M. and Korbicz, J. (2011). GMDH neural networks, in B. Wilamowski and J. Irwin (Eds.), The Industrial ElectronicsHandbook, 2nd Edn., Vol. 5, CRC Press, Taylor Francis Group, Boca Raton, FL, pp. 8-1-8-21.10.1201/b10604-11
Mrugalski, M. and Witczak, M. (2012). State-space GMDH neural networks for actuator robust fault diagnosis, Advancesin Electrical and Computer Engineering 12(3): 65-72.10.4316/aece.2012.03010
Mrugalski, M., Witczak, M. and Korbicz, J. (2008). Confidence estimation of the multi-layer perceptron and its application in fault detection systems, Engineering Applications of ArtificialIntelligence 21(6): 895-906.10.1016/j.engappai.2007.09.008
Niemann, H.H. (2012). A model-based approach to fault-tolerant control, International Journal of AppliedMathematics and Computer Science 22(1): 67-86, DOI: 10.2478/v10006-012-0005-x.10.2478/v10006-012-0005-x
Noura, H., Theilliol, D., Ponsart, J. and Chamseddine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, Springer-Verlag, London.10.1007/978-1-84882-653-3
Pan, Y., Sung, S. and Lee, J. (2001). Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks, Control Engineering Practice9(8): 859-867.10.1016/S0967-0661(01)00050-8
Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematicsand Computer Science 18(4): 443-454, DOI: 10.2478/v10006-008-0039-2.10.2478/v10006-008-0039-2
Patton, R., Frank, P. and Clark, R. (2000). Non-linear SystemsIdentification. From Classical Approaches to Neural Networksand Fuzzy Models, Springer-Verlag, Berlin.
Teixeira, B., Torres, L., Aguirre, L. and Bernstein, D. (2010). On unscented Kalman filtering with state interval constraints, Journal of Process Control 20(1): 45-57.10.1016/j.jprocont.2009.10.007
Williams, R. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks, NeuralComputation 1(2): 270-280.10.1162/neco.1989.1.2.270
Witczak, M. (2007). Modelling and Estimation Strategies forFault Diagnosis of Non-Linear Systems. From Analyticalto Soft Computing Approaches, Springer-Verlag, Berlin.
Witczak, M., Korbicz, J., Mrugalski, M. and Patton, R. (2006). A GMDH neural network based approach to robust fault detection and its application to solve the Damadics benchmark problem, Control Engineering Practice14(6): 671-683.10.1016/j.conengprac.2005.04.007
Witczak, M. and Prętki, P. (2007). Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms, International Journalof Control 80(5): 749-762.10.1080/00207170601178108