Atieg, A. and Watson, G.A. (2004). Use of lpnorms in fitting curves and surfaces to data, The ANZIAM Journal 45(E): C187-C200.10.21914/anziamj.v45i0.882
Demidenko, E.Z. (2008). Criteria for unconstrained global optimization, Journal of Optimization Theory and Applications136(3): 375-395.10.1007/s10957-007-9298-6
Demidenko, E.Z. (2006). Criteria for global minimum of sum of squares in nonlinear regression, Computational Statistics& Data Analysis 51(3): 1739-1753.10.1016/j.csda.2006.06.015
Demidenko, E.Z. (1996). On the existence of the least squares estimate in nonlinear growth curve models of exponential type, Communications in Statistics-Theory and Methods25(1): 159-182.10.1080/03610929608831686
Hadeler, K.P., Jukić, D. and Sabo, K. (2007). Least squares problems for Michaelis Menten kinetics, MathematicalMethods in the Applied Sciences 30(11): 1231-1241.10.1002/mma.835
Jukić, D. (2013) On nonlinear weighted least squares estimation of Bass diffusion model, Applied Mathematics and Computation, (accepted).10.1016/j.amc.2013.02.018
Jukić, D. and Marković, D. (2010). On nonlinear weighted errors-in-variables parameter estimation problem in the three-parameter Weibull model, Applied Mathematics andComputation 215(10): 3599-3609.10.1016/j.amc.2009.10.056
Jukić, D. (2009). On the existence of the best discrete approximation in lpnorm by reciprocals of real polynomials, Journal of Approximation Theory 156(2): 212-222.
Jukić, D., Benšić, M. and Scitovski, R. (2008). On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution, ComputationalStatistics & Data Analysis 52(9): 4502-4511.10.1016/j.csda.2008.03.001
Jukić, D., Kralik, G. and Scitovski, R. (2004). Least squares fitting Gompertz curve, Journal of Computational and AppliedMathematics 169(2): 359-375.10.1016/j.cam.2003.12.030
Mahajan, V., Mason, C.H. and Srinivasan, V. (1986). An evaluation of estimation procedures for new product diffusion models, in V. Mahajan and Y. Wind (Eds.), InnovationDiffusion Models of New Product Acceptance, Ballinger Publishing Company, Cambridge, pp. 203-232.
Mahajan, V. and Sharma, S. (1986). A simple algebraic estimation procedure for innovation diffusion models of new product acceptance, Technological Forecasting andSocial Change 30(4): 331-346.10.1016/0040-1625(86)90031-4
Marković, D. and Jukić, D. (2010). On nonlinear weighted total least squares parameter estimation problem for the three-parameter Weibull density, Applied MathematicalModelling 34(7): 1839-1848.10.1016/j.apm.2009.10.001
Marković, D., Jukić, D. and Benšić, M. (2009). Nonlinear weighted least squares estimation of a three-parameter Weibull density with a nonparametric start, Journalof Computational and Applied Mathematics 228(1): 304-312.10.1016/j.cam.2008.09.025
Schmittlein, D. and Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance, Marketing Science 1(1): 57-78.10.1287/mksc.1.1.57
Scitovski, R. and Meler, M. (2002). Solving parameter estimation problem in new product diffusion models, AppliedMathematics and Computation 127(1): 45-63.10.1016/S0096-3003(00)00164-8
Srinivasan, V. and Mason, C.H. (1986). Nonlinear least squares estimation of new product diffusion models, MarketingScience 5(2): 169-178.10.1287/mksc.5.2.169