Have a personal or library account? Click to login

An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise

Open Access
|Mar 2013

References

  1. Bai, Z.D., Rao, C.R., Chow M. and Kundu, D. (2003). An efficient algorithm for estimating the parameters of superimposed exponential signals, Journal of StatisticalPlanning and Inference 110(1-2): 23-34.10.1016/S0378-3758(01)00287-7
  2. Besson, B. and Castanie, F. (1993). On estimating the frequency of a sinusoid in auto-regressive multiplicative noise, SignalProcessing 30(1): 65-83.10.1016/0165-1684(93)90051-B
  3. Bian, J., Li, H. and Peng, H. (2009). An efficient and fast algorithm for estimating the frequencies of superimposed exponential signals in zero-mean multiplicative and additive noise, Journal of Statistical Computation andSimulation 74(12): 1407-1423.10.1080/00949650802345609
  4. Bian, J., Li, H. and Peng, H. (2009). An efficient and fast algorithm for estimating the frequencies of superimposed exponential signals in multiplicative and additive noise, Journal of Information and Computational Science6(4): 1785-1797.
  5. Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction, Wiley, New York, NY.
  6. Bressler, Y. and MaCovski, A. (1986). Exact maximum likelihood parameters estimation of superimposed exponential signals in noise, IEEE Transactions onSignal Processing 34(5): 1081-1089.10.1109/TASSP.1986.1164949
  7. Chan, K.W. and So, H.C. (2004). Accurate frequency estimation for real harmonic sinusoids, IEEE Signal Processing Letters11(7): 609-612.10.1109/LSP.2004.830115
  8. Dwyer, R.F. (1991). Fourth-order spectra of Gaussian amplitude modulated sinusoids, Journal of the Acoustical Society ofAmerica 90(2): 918-926.10.1121/1.401958
  9. Fuller, W.A. (1996). Introduction to Statistical Time Series, 2nd Edn., Wiley, New York, NY.
  10. Gawron, P., Klamka, J. and Winiarczyk, R. (2012). Noise effects in the quantum search algorithm from the viewpoint of computational complexity, InternationalJournal of Applied Mathematics and Computer Science22(2): 493-499, DOI: 10.2478/v10006-012-0037-2.10.2478/v10006-012-0037-2
  11. Ghogho, M., Swami, A. and Garel, B. (1999). Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise, IEEETransactions on Signal Processing 47(12): 3235-3249.10.1109/78.806069
  12. Ghogho, M., Swami, A. and Nandi, A.K. (1999). Non-linear least squares estimation for harmonics in multiplicative and additive noise, Signal Processing 78(1): 43-60.10.1016/S0165-1684(99)00046-8
  13. Giannakis, G.B. and Zhou, G. (1995). Harmonics in multiplicative and additive noise: Parameter estimation using cyclic statistics, IEEE Transactions on Signal Processing43(9): 2217-2221.10.1109/78.414790
  14. Hartley, H.O. (1961). The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares, Technometrics 3(2): 269-280.10.1080/00401706.1961.10489945
  15. Hwang, J.K. and Chen, Y.C. (1993). A combined detection-estimation algorithm for the harmonic-retrieval problem, Signal Processing 30(2): 177-197.10.1016/0165-1684(93)90146-2
  16. Jennrich, R.I. (1969). Asymptotic properties of non-linear least squares estimators, The Annals of Mathematical Statistics40(2): 633-643.10.1214/aoms/1177697731
  17. Kannan, N. and Kundu, D. (1994). On modified EVLP and ML methods for estimating superimposed exponential signals, Signal Processing 39(3): 223-233.10.1016/0165-1684(94)90086-8
  18. Koko, J. (2004). Newton’s iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition, International Journalof Applied Mathematics and Computer Science14(1): 13-18.
  19. Kundu, D. (1997). Asymptotic theory of the least squares estimators of sinusoidal signals, Statistics30(3): 221-238.10.1080/02331889708802611
  20. Kundu, D., Bai, Z., Nandi, S. and Bai, L. (2011). Super efficient frequency estimation, Journal of Statistical Planning andInference 141(8): 2576-2588.10.1016/j.jspi.2011.02.006
  21. Kundu, D. and Mitra, A. (1995). Consistent method of estimating superimposed exponential signals, ScandinavianJournal of Statistics 22(1): 73-82.
  22. Kundu, D. and Mitra, A. (1999). On asymptotic behavior of the least squares estimators and the confidence intervals of the superimposed exponential signals, Signal Processing72(2): 129-139.10.1016/S0165-1684(98)00171-6
  23. Li, J. and Stoica, P. (1996). Efficient mixed-spectrum estimation with applications to target feature extraction, IEEE Transactionson Signal Processing 44(2): 281-295.10.1109/78.485924
  24. Mangulis, V. (1965). Handbook of Series for Scientists and Engineers, Academic Press, New York, NY.10.1016/B978-0-12-468850-6.50006-1
  25. Nandi, S. and Kundu, D. (2006). An efficient and fast algorithm for estimating the parameters of sinusoidal signals, Sankhya 68(2): 283-306.
  26. Osborne, M.R. and Smyth, G.K. (1995). A modified Prony algorithm for fitting sum of exponential functions, SIAM Journal on Scientific and Statistical Computing16(1): 119-138.10.1137/0916008
  27. Peng, H., Li, H. and Bian, J. (2009). Asymptotic behavior of least squares estimators for harmonics in multiplicative and additive noise, Journal of Information and ComputationalScience 6(4): 1847-1860.
  28. Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoise, International Journalof Applied Mathematics and Computer Science21(4): 769-777, DOI: 10.2478/v10006-011-0061-7.10.2478/v10006-011-0061-7
  29. Quinn, B.G. (1994). Estimating frequency by interpolation using Fourier coefficients, IEEE Transactions on Signal Processing42(5): 1264-1268.10.1109/78.295186
  30. Rice, J. A. and Rosenblatt, M. (1988). On frequency estimation, Biometrika 75(3): 477-484.10.1093/biomet/75.3.477
  31. Roy, R. and Kailath, T. (1989). ESPRIT: Estimation of signal parameters via rotational invariance techniques, IEEETransactions on Signal Processing 37(7): 984-995.10.1109/29.32276
  32. Sadler, B., Giannakis, G. and Shamsunder, S. (1995). Noise subspace techniques in non-Gaussian noise using cumulants, IEEE Transactions on Aerospace and ElectronicSystems 31(3): 1009-1018.10.1109/7.395239
  33. Swami, A. (1994). Multiplicative noise models: Parameter estimation using cumulants, Signal Processing36(3): 355-373.10.1016/0165-1684(94)90033-7
  34. Tufts, D.W. and Kumaresan, R. (1982). Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood, Proceedingsof IEEE 70(9): 975-989.10.1109/PROC.1982.12428
  35. Van Trees, H.L. (1971). Detection, Estimation and ModulationTheory, Part III: Radar-Sonar Signal Processing andGaussian Signals in Noise, Wiley, New York, NY.
  36. Ypma, T.J. (1995). Historical development of the Newton-Raphson method, SIAM Review 37(4): 531-551.10.1137/1037125
  37. Zhang, X.D., Liang, Y.C. and Li, Y.D. (1994). A hybrid approach to harmonic retrieval in non-Gaussian ARMA noise, IEEE Transactions on Information Theory40(7): 1220-1226.10.1109/18.335951
  38. Zhang, Y. and Wang, S.X. (2000). Harmonic retrieval in colored non-Gaussian noise using cumulants, IEEE Transactionson Signal Processing 48(3): 982-987.10.1109/78.827532
  39. Zhou, G. and Giannakis, G.B. (1994). On estimating random amplitude modulated harmonics using higher-order spectra, IEEE Journal of Oceanic Engineering19(4): 529-539.10.1109/48.338389
  40. Zhou, G. and Giannakis, G.B. (1995). Harmonics in multiplicative and additive noise: Performance analysis of cyclic estimators, IEEE Transactions on Signal Processing43(6): 1445-1460.10.1109/78.388857
DOI: https://doi.org/10.2478/amcs-2013-0010 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 117 - 129
Published on: Mar 26, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Jiawen Bian, Huiming Peng, Jing Xing, Zhihui Liu, Hongwei Li, published by Sciendo
This work is licensed under the Creative Commons License.