Have a personal or library account? Click to login
Open Access
|Mar 2013

References

  1. Abonyi, J. and Babuška, R. (2000). Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models, 9th IEEE InternationalConference on Fuzzy Systems, FUZZ-IEEE, San Antonio,CA, USA, pp. 835-840.
  2. Babuška, R. (1998). Fuzzy Modeling for Control, Kluwer Academic Publishers, London.10.1007/978-94-011-4868-9
  3. Billings, S.A. and Zhu, Q.M. (1994). Nonlinear model validation using correlation test, International Journal of Control60(6): 1107-1120.10.1080/00207179408921513
  4. Boukhris, A., Mourot, G. and Ragot, J. (1999). Non-linear dynamic system identification: A multiple-model approach, International Journal of Control72(7/8): 591-604.10.1080/002071799220795
  5. Dumitrescu, D., Lazzerini, B. and Jain, L.C. (2000). Fuzzy Setsand Their Application to Clustering and Training, CRC Press Taylor & Francis, Boca Raton, FL.10.1201/9781482273977
  6. Edwards, D. and Hamson, M. (2001). Guide to MathematicalModelling, 2nd Edn., Basingstoke, Palgrave, Chapter 1, p. 3.
  7. Filev, D. (1991). Fuzzy modeling of complex systems, InternationalJournal of Approximate Reasoning 5(3): 281-290.10.1016/0888-613X(91)90013-C
  8. Gatzke, E.P. and Doyle III, F.J. (1999). Multiple model approach for CSTR control, 14th IFAC World Congress, Beijing,China, pp. 343-348.
  9. Gawthrop, P.J. (1995). Continuous-time local state local model networks, 1995 IEEE Conference on Systems, Man and Cybernetics,Vancouver, Canada, pp. 852-857.
  10. Gray, G.J., Murray-Smith, D.J., Li, Y. and Sharman, K.C. (1996). Nonlinear system modelling using output error estimation of a local model network, Technical ReportCSC-96005, Centre for Systems and Control, Glasgow University, Glasgow.
  11. Gregorčič, G. and Lightbody, G. (2000). Control of highly nonlinear processes using self-tuning control and multiple/local model approaches, 2000 IEEE InternationalConference on Intelligent Engineering Systems, INES2000, Portoroz, Slovenia, pp. 167-171.
  12. Gregorčič, G. and Lightbody, G. (2008). Nonlinear system identification: From multiple-model networks to Gaussian processes, Engineering Applications of Artificial Intelligence21(7): 1035-1055.10.1016/j.engappai.2007.11.004
  13. Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2012). New fault tolerant control strategies for nonlinear Takagi-Sugeno systems, International Journal of AppliedMathematics and Computer Science 22(1): 197-210, DOI: 10.2478/v10006-012-0015-8.10.2478/v10006-012-0015-8
  14. Johansen, T.A. and Babuška, R. (2003). Multi-objective identification of Takagi-Sugeno fuzzy models, IEEETransactions on Fuzzy Systems 11(6): 847-860.10.1109/TFUZZ.2003.819824
  15. Johansen, T.A. and Foss, A.B. (1993). Constructing NARMAX using ARMAX models, International Journal of Control58(5): 1125-1153.10.1080/00207179308923046
  16. Kanev, S. and Verhaegen, M. (2006). Multiple model weight estimation for models with no common state, 6th IFACSymposium on Fault Detection, Supervision and Safetyof Technical Processes, SAFEPROCESS, Beijing, China, pp. 637-642.
  17. Kiriakidis, K. (2007). Nonlinear modelling by interpolation between linear dynamics and its application in control, Journal of Dynamics Systems, Measurement and Control129(6): 813-824.10.1115/1.2789473
  18. Leith, D.J. and Leithead, W.E. (1999). Analytic framework for blended multiple model systems using linear local models, International Journal of Control 72(7): 605-619.10.1080/002071799220803
  19. Ljung, L. (1999). System Identification: Theory for the User, 2nd Edn., Prentice Hall PTR, London.
  20. Mäkilä, P.M. and Partington, J.R. (2003). On linear models for nonlinear systems, Automatica 39(1): 1-13.10.1016/S0005-1098(02)00183-8
  21. McLoone, S. and Irwin, G.W. (2003). On velocity-based local model networks for nonlinear identification, Asian Journalof Control 5(2): 309-315.10.1111/j.1934-6093.2003.tb00122.x
  22. Murray-Smith, R. and Johansen, T.A. (1997). Multiple ModelApproaches to Modelling and Control, Taylor & Francis, London.
  23. Narendra, K.S. and Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks, IEEETransactions on Neural Networks 1(1): 4-27.10.1109/72.80202
  24. Nelles, O. (2001). Nonlinear System Identification, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-662-04323-3
  25. Nie, J. (1994). A neural approach to fuzzy modeling, AmericanControl Conference, ACC, Baltimore, MD, USA, pp. 2139-2143.
  26. Orjuela, R., Maquin, D. and Ragot, J. (2006). Nonlinear system identification using uncoupled state multiple-model approach, Workshop on Advanced Control and Diagnosis,ACD’2006, Nancy, France.
  27. Orjuela, R., Marx, B., Ragot, J. and Maquin, D. (2008). State estimation for nonlinear systems using a decoupled multiple mode, International Journal of Modelling Identificationand Control 4(1): 59-67.10.1504/IJMIC.2008.021000
  28. Orjuela, R., Marx, B., Ragot, J. and Maquin, D. (2009). On the simultaneous state and unknown inputs estimation of complex systems via a multiple model strategy, IET ControlTheory & Applications 3(7): 877-890.10.1049/iet-cta.2008.0148
  29. Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematicsand Computer Science 17(1): 27-37, DOI: 10.2478/v10006-007-0004-5.10.2478/v10006-007-0004-5
  30. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H. and Juditsky, A. (1995). Nonlinear black-box modeling in system identification: A unified overview, Automatica 31(12): 1691-1724.10.1016/0005-1098(95)00120-8
  31. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to model and control, IEEE Transactions on Systems, Man, and Cybernetics15(1): 116-132.10.1109/TSMC.1985.6313399
  32. Uppal, F.J., Patton, R.J. and Witczak, M. (2006). A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem, ControlEngineering Practice 14(6): 699-717.10.1016/j.conengprac.2005.04.015
  33. Venkat, A.N., Vijaysai, P. and Gudi, R.D. (2003). Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space, Journal ofProcess Control 13(6): 473-488.10.1016/S0959-1524(02)00120-8
  34. Verdult, V., Ljung, L. and Verhaegen, M. (2002). Identification of composite local linear state-space models using a projected gradient search, International Journal of Control75(16/17): 1385-1398.10.1080/0020717021000023807
  35. Vinsonneau, B., Goodall, D. and Burnham, K. (2005). Extended global total least square approach to multiple-model identification, 16th IFAC World Congress, Prague, CzechRepublic, p. 143.
  36. Walter, E. and Pronzato, L. (1997). Identification of ParametricModels: From Experimental Data, Springer-Verlag, Berlin.
  37. Wen, C., Wang, S., Jin, X. and Ma, X. (2007). Identification of dynamic systems using piecewise-affine basis function models, Automatica 43(10): 1824-1831.10.1016/j.automatica.2007.03.003
  38. Xu, D., Jiang, B. and Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model, International Journal of AppliedMathematics and Computer Science 22(1): 183-196, DOI: 10.2478/v10006-012-0014-9.10.2478/v10006-012-0014-9
  39. Yen, J., Wang, L. and Gillespie, C.W. (1998). Improving the interpretability of Takagi-Sugeno fuzzy models by combining global learning and local learning, IEEE Transactionson Fuzzy Systems 6(4): 530-537.10.1109/91.728447
DOI: https://doi.org/10.2478/amcs-2013-0009 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 103 - 115
Published on: Mar 26, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Rodolfo Orjuela, Benoît Marx, José Ragot, Didier Maquin, published by Sciendo
This work is licensed under the Creative Commons License.