Have a personal or library account? Click to login
Linear adaptive structure for control of a nonlinear MIMO dynamic plant Cover

Linear adaptive structure for control of a nonlinear MIMO dynamic plant

Open Access
|Mar 2013

References

  1. Antoniou, E. and Vardulakis, A. (2005). On the computation and parametrization of proper denominator assigning compensators for strictly proper plants, IMA Journal ofMathematical Control and Information 22(1): 12-25.10.1093/imamci/dni002
  2. Aström, K. and Wittenmark, B. (1995). Adaptive Control, Addison Wesley, Reading, MA.
  3. Bańka, S. (2007). Multivariable Control Systems: A PolynomialApproach, Szczecin University of Technology Press, Szczecin, (in Polish).
  4. Bańka, S., Dworak, P. and Brasel, M. (2010a). On control of nonlinear dynamic MIMO plants using a switchable structure of linear modal controllers, Measurement Automationand Monitoring 56(5): 385-391, (in Polish).
  5. Bańka, S., Dworak, P., Brasel, M. and Latawiec, K.J. (2010b). A switched structure of linear MIMO controllers for positioning of a drillship on a sea surface, Proceedings ofthe 15th International Conference on Methods and Models in Automation and Robotics, MMAR 2010, Międzyzdroje,Poland, pp. 249-254.10.1109/MMAR.2010.5587228
  6. Bańka, S., Dworak, P. and Jaroszewski, K. (2011a). Adaptive controller of ships position based on a nonlinear model of drillship motions in 3DOF, in K. Malinowski and R. Dindorf (Eds.), Advances of Automatics and Robotics, Kielce University of Technology Press, Kielce, pp. 21-26, (in Polish).
  7. Bańka, S., Dworak, P. and Jaroszewski, K. (2011b). Problems associated with realization of neural modal controllers designed to control multivariable dynamic systems, in K. Malinowski and R. Dindorf (Eds.), Advances of Automaticsand Robotics, Kielce University of Technology Press, Kielce, pp. 27-41, (in Polish).
  8. Bańka, S. and Latawiec, K.J. (2009). On steady-state error-free regulation of right-invertible LTI MIMO plants, Proceedings of the 14th International Conferenceon Methods and Models in Automation and Robotics,MMAR 2009, Mi˛edzyzdroje, Poland, DOI: 10.3182/20090819-3-PL-3002.00066.10.3182/20090819-3-PL-3002.00066
  9. Callier, F.M. and Kraffer, F. (2005). Proper feedback compensators for a strictly proper plant by polynomial equations, International Journal of Applied Mathematicsand Computer Science 15(4): 493-507.
  10. Fabri, S. and Kadrikamanathan, V. (2001). FunctionalAdaptive Control. An Intelligent Systems Approach, Springer-Verlag, Berlin.
  11. Fossen, T.I. and Strand, J.P. (1999). A tutorial on nonlinear backstepping: Applications to ship control, Modelling,Identification and Control 20(2): 83-135.10.4173/mic.1999.2.3
  12. Gierusz, W. (2005). Synthesis of Multivariable Control Systemsfor Precise Steering of Ships Motion Using Selected RobustSystems Design Methods, Gdynia Maritime Academy Press, Gdynia, (in Polish).
  13. Kaczorek, T. (1992). Linear Control Systems: Analysis of MultivariableSystems, John Wiley and Sons, New York, NY.
  14. Pedro, J.O. and Dahunsi, O.A. (2011). Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system, International Journal of Applied Mathematicsand Computer Science 21(1): 137-147, DOI: 10.2478/v10006-011-0010-5.10.2478/v10006-011-0010-5
  15. Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer-Verlag, London.
  16. Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematicsand Computer Science 20(2): 271-280, DOI: 10.2478/v10006-010-0020-8.10.2478/v10006-010-0020-8
  17. Tzirkel-Hancock, E. and Fallside, F. (1992). Stable control of nonlinear systems using neural networks, International Journalof Robust and Nonlinear Control 2(1): 63-86.10.1002/rnc.4590020105
  18. Vidyasagar, M. (1985). Control System Synthesis: A FactorizationApproach, MIT Press, Cambrigde, MA.
  19. Wise, D.A. and English, J.W. (1975). Tank and wind tunnel tests for a drill-ship with dynamic position control, OffshoreTechnology Conference, Dallas, TX, USA, pp. 103-118.
  20. Witkowska, A., Tomera, M. and Śmierzchalski, R. (2007). A backstepping approach to ship course control, InternationalJournal of Applied Mathematics and Computer Science17(1): 73-85, DOI: 10.2478/v10006-007-0007-2.10.2478/v10006-007-0007-2
  21. Wolovich, W.A. (1974). Linear Multivariable Systems, Springer-Verlag, New York, NY.10.1007/978-1-4612-6392-0
  22. Zhai, G. and Xu, X. (2010). A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching, International Journal of Applied Mathematicsand Computer Science 20(2): 249-259, DOI: 10.2478/v10006-010-0018-2.10.2478/v10006-010-0018-2
  23. Zwierzewicz, Z. (2008). Nonlinear adaptive tracking-control synthesis for general linearly parametrized systems, in J.M. Ramos Arreguin (Ed.), Automation and Robotics, InTech, pp. 375-388, DOI: 10.5772/6116.10.5772/6116
DOI: https://doi.org/10.2478/amcs-2013-0005 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 47 - 63
Published on: Mar 26, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Stanisław Bańka, Paweł Dworak, Krzysztof Jaroszewski, published by Sciendo
This work is licensed under the Creative Commons License.