Akbari, H. and Kerayechian, A. (2012). Coiflet-Galerkin method for solving second order BVPs with variable coefficients in three dimensions, Numerical Algorithms 61(4): 681-698, DOI: 10.1007/s11075-012-9558-x.10.1007/s11075-012-9558-x
Baccou, J. and Liandrat, J. (2006). Definition and analysis of a wavelet fictitious domain solver for the 2-D heat equation on a general domain, Mathematical Models and Methodsin Applied Sciences 16(6): 819-845.10.1142/S0218202506001364
Bandrowski, B., Karczewska, A. and Rozmej, P. (2010). Numerical solutions to integral equations equivalent to differential equations with fractional time, InternationalJournal of Applied Mathematics and Computer Science20(2): 261-269, DOI: 10.2478/v10006-010-0019-1.10.2478/v10006-010-0019-1
Cerna, D., Finek, V. and Najzar, K. (2008). On the exact values of coefficients of Coiflets, Central European Journal ofMathematics 6(1): 159-169.10.2478/s11533-008-0011-2
El-Gamel, M. (2006). A wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation, Applied Mathematics and Computation 181(2): 1635-1644.10.1016/j.amc.2006.03.017
Glowinski, R., Pan, T.W. and Periaux, J. (2006). Numerical simulation of a multi-store separation phenomenon: A fictitious domain approach, Computer Methods in AppliedMechanics and Engineering 195(41): 5566-5581.10.1016/j.cma.2005.09.018
Hashish, H., Behiry, S.H., Elsaid, A. (2009). Solving the 2-D heat equations using wavelet-Galerkin method with variable time step, Applied Mathematics and Computation213(1): 209-215.10.1016/j.amc.2009.02.055
Jensen, T.K. and Hansen, P.C. (2007). Iterative regularization with minimum-residual methods, BIT Numerical Mathematics47(1): 103-120.10.1007/s10543-006-0109-5
The evaluation of connection coefficients of compactly supported wavele, Proceedings of the Workshop onWavelets and Turbulence, Princeton, NJ, USA, pp. 76-89.
Lin, E. and Zhou, X. (2001). Connection coefficients on an interval and wavelet solution of Burgers equation, Journalof Computational and Applied Mathematics 135(1): 63-78.10.1016/S0377-0427(00)00562-8
Nowak, Ł.D., Pasławska-Południak, M. and Twardowska, K. (2010). On the convergence of the wavelet-Galerkin method for nonlinear filtering, International Journal of AppliedMathematics and Computer Science 20(1): 93-108, DOI: 10.2478/v10006-010-0007-5.10.2478/v10006-010-0007-5
Resnikoff, H. and Wells, R.O. Jr (1998). Wavelet Analysis: TheScalable Structure of Information, Springer-Verlag, New York, NY.10.1007/978-1-4612-0593-7
Romine, C.H. and Peyton, B.W. (1997). Computing connection coefficients of compactly supported wavelets on bounded intervals, Technical Report ORNL/TM-13413, Computer Science and Mathematical Division, Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN, http://citeseer.ist.psu.edu/romine97computing.html.
Vampa, V., Martin, M. and Serrano, E. (2010). A hybrid method using wavelets for the numerical solution of boundary value problems on the interval, Applied Mathematics andComputation 217(7): 3355-3367.10.1016/j.amc.2010.08.068