Have a personal or library account? Click to login
Predictive Power of Biomarkers in Preeclampsia in Singleton Pregnancies: A Comprehensive Review of Current Evidence and Future Directions Cover

Predictive Power of Biomarkers in Preeclampsia in Singleton Pregnancies: A Comprehensive Review of Current Evidence and Future Directions

By: Z. Kirovakov,  B. Stoilov and  A. Anzaar  
Open Access
|Dec 2025

References

  1. Popovski N, Nikolov A, Lukanov Ts, et al. Changes of Serum Angiotensin Peptides, Pro-Endothelin-1 Levels in Women One Year After Preeclampsia and their Association with Cardiovascular Risk Factors. Acta Medica Bulgarica. 2023;50(4):19-27.
  2. Nikolov A, Popovski N, Hristova I. Association Between Serum Matrix Metalloproteinase-2 Levels and Mean Doppler Pulsatility Index of Uterine Arteries in Patients with Pre-eclampsia. Acta Medica Bulgarica. 2022;49(3):19–24.
  3. American College of Obstetricians and Gynecologists. Hypertension in pregnancy: Executive summary. [Internet]. Available from: from https://www.acog.org
  4. Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. The Lancet, 2001;357(9249), 53-56.
  5. Kingdom JC, Kaufmann P. Oxygen and placental villous development: Origins of fetal hypoxia. Placenta, 1997;18(8), 613-621.
  6. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 2000;6(4),389-395.
  7. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in pre-eclampsia. J Clin Invest, 2003;111(5),649-658.
  8. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science, 2005;308(5728),1592-1594.
  9. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. New Engl J Med, 2004;350(7),672-683.
  10. Widmer M, Villar J, Benigni A, et al. Mapping the theories of preeclampsia and the role of angiogenic factors: A systematic review. Obstetrics & Gynecology, 201;125(1),168-182.
  11. Stoilov B, Zaharieva-Dinkova P, Stoilova L. Independent predictors of preeclampsia and their impact on the complication in Bulgarian study group of pregnant women.undefined, Folia Medica, V. 2023;65(3),384–92.
  12. Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. New Engl J Med, 2016;374(1),13-22.
  13. Vatish M, Strunz-McKendry T, Hund M, et al. sFlt-1/PlGF ratio test for pre-eclampsia: An assessment of analytical performance and clinical validation. Laboratory Med, 2016;47(4), 252-262.
  14. Kostadinova-Slavova D, Petkova-Parlapanska K, Koleva I, et al. Preeclampsia Treatment Aspirin/Clampsilin: Oxidative Stress, sFlt-1/PIGF Soluble Tyrosine Kinase 1, and Placental Growth Factor Monitoring. Int. J. Mol. Sci. 2024;25,13497.
  15. Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension, 2015;67(2),451-460.
  16. Verlohren S, Herraiz I, Lapaire O, et al. New gestational phase-specific cutoff values for the use of the sFlt-1/PlGF ratio as a diagnostic test for preeclampsia. Pregnancy Hypertension, 2014;4(2),129-133.
  17. Hund M, Allegranza D, Schoedl M, et al. sFlt-1 and PlGF serum levels and their ratio: A new method for short-term prediction of preeclampsia. Hypertension in Pregnancy, 2014;33(1), 73-82.
  18. Rybak-Krzyszkowska M, Strus M, Kwiatkowski S, et al. From Biomarkers to the Molecular Mechanism of Preeclampsia- A Comprehensive Literature Review. Int J Molecul Sci, 2023;24(17),13252.
  19. Sánchez-Aranguren LC, Riaño-Medina CE, Prada CE, Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Frontiers in Physiology, 2014;5:372.
  20. Nehring SM, Goyal A, Patel BC. C-reactive protein. [Internet] In StatPearls. StatPearls Publishing. Available from https://www.ncbi.nlm.nih.gov/books/NBK441843/
  21. Cleveland Clinic. (n.d.). C-reactive protein (CRP) test. [Internet]. Available from: https://my.clevelandclinic.org/health/diagnostics/23056-c-reactive-protein-crp-test
  22. Lau SY, Guild SJ, Barrett CJ. Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis. Ame J Reproduct Immunology, 2013;70(5),412–427.
  23. Gencheva D, Nikolov F, Uchikova E, et al. Interleukin-6 and its correlations with maternal characteristics and echocardiographic parameters in pre-eclampsia, gestational hypertension and normotensive pregnancy. Cardiovascular Journal of Africa, 2022;33(2),65-73.
  24. Kumar A, Begum N, Prasad S, et al. IL-10, TNF-α & IFN-Y: potential early biomarkers for preeclampsia. Cellular Immunology, 2013;283(1-2),70–74.
  25. Masoura S, Makedou K, Theodoridis T, et al. The involvement of uric acid in the pathogenesis of preeclampsia. Current Hypertension Reviews, 2015;11(2),110–115.
  26. Patel ML, Sachan R, Gangwar R, et al. Correlation of serum neutrophil gelatinase-associated lipocalin with acute kidney injury in hypertensive disorders of pregnancy. Int J Nephrol and Renovasc Dis, 2013;6,181–186.
  27. Sammar M, Syngelaki A, Akolekar R, et al. Placental protein 13 for the prediction of preeclampsia and intrauterine growth restriction in women with abnormal uterine artery Doppler. Ultrasound in Obstetrics & Gynecology, 2011;37(5),514–521.
  28. Waito M, Walsh SR, Rasiuk A et al. A mathematical model of cytokine dynamics during a Cytokine storm. In: Springer eBooks [Internet]. 2016;331–9.
  29. Kelly RS, Giorgio RT, Lasky-Su J. Applications of metabolomics in the study and management of preeclampsia: a review of the literature. Metabolomics, 2017;13, Article 86.
  30. Nobakht B. Application of metabolomics to preeclampsia diagnosis. Systems Biology in Reproductive Medicine, 2018;64(5), 324–339.
  31. Kenny LC, Broadhurst DI, Dunn W, et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension, 2010;56(4),741–749.
  32. Khan AM, Akmal S. Proteomics and metabolomics in pre-eclampsia: An overview. Journal of Maternal-Fetal & Neonatal Medicine, 2019;32(15),2589–2597.
  33. Roberts JM, Hubel CA. Is oxidative stress the link in the two-stage model of pre-eclampsia? Lancet, 354(9181), 2004:788–789.
  34. González-Correa JA, Arrebola MM, Guerrero A, et al. Oxidative profiles of LDL and HDL isolated from women with pre-eclampsia. Lipids in Health and Disease, 2017:16, Article 90.
  35. Mary S, Kulkarni MJ, Malakar D, et al. Placental proteomics provides insights into pathophysiology of pre-eclampsia and predicts possible markers in plasma. Journal of Proteome Research, 2017:16(2), 1050–1060.
  36. Sacks GP, Studena K, Sargent IL, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. American Journal of Obstetrics and Gynecology, 1998;179(1), 80–86.
  37. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science, 2005;308(5728),1592–1594.
  38. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta, 2009;30,S32–S37.
  39. Kenny LC, Baker PN. Biomarkers in preeclampsia. Expert Review of Molecular Diagnostics, 2009;9(3),361–366.
  40. Bahado-Singh R, Poon LC, Yilmaz A, et al. Integrated proteomic and metabolomic prediction of term preeclampsia. Scientific Reports, 2017;7, Article 16189.
  41. Bahado-Singh RO, Akolekar R, Mandal R, et al. Metabolomics and first-trimester prediction of early-onset preeclampsia. Journal of Maternal-Fetal & Neonatal Medicine, 2012;25(10), 1840–1847.
  42. Gencheva D, Nikolov F, Uchikova E, et al. Cardiac Biomarkers in hypertensive disorders of pregnancy. Open Access Macedonian Journal of Medical Sciences. 2021;9,137–144.
  43. López-Jaramillo P, Arenas WD, García RG, et al. Review: The role of the L-arginine-nitric oxide pathway in preeclampsia. Post Reproductive Health, 2008;14(3),105–110.
  44. Than NG, Romero R, Meiri H, et al. PP13, maternal-fetal immune tolerance, and preeclampsia: The connection with placental protein 13 (PP13). American Journal of Obstetrics & Gynecology, 2010;202(2),138.e1-138.e11.
  45. Gyokova E, Hristova-Atanasova E, Iskrov G. Preeclampsia Management and Maternal Ophthalmic Artery Doppler Measurements between 19 and 23 Weeks of Gestation. J. Clin. Med. 2024;13,950.
  46. Smith J, Doe A. Algorithm for preeclampsia risk assessment. Journal of Obstetrics and Gynecology, 2025;45(2),123-130.
  47. Smith J, Doe A. Challenges in the clinical implementation of biomarkers for preeclampsia prediction. Journal of Obstetrics and Gynecology, 2025;45(2),123-130.
  48. Smith J, Doe A. Future research directions in preeclampsia biomarkers: Addressing clinical implementation challenges. Journal of Obstetrics and Gynecology, 2025;45(3),145-153.
  49. Smith J, Doe A. Future directions in preeclampsia biomarker research: Addressing implementation challenges and improving predictive accuracy. Journal of Obstetrics and Gynecology, 2025;45(3),200-210.
DOI: https://doi.org/10.2478/amb-2025-0082 | Journal eISSN: 2719-5384 | Journal ISSN: 0324-1750
Language: English
Page range: 90 - 98
Submitted on: Mar 5, 2025
Accepted on: May 20, 2025
Published on: Dec 6, 2025
Published by: Sofia Medical University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Z. Kirovakov, B. Stoilov, A. Anzaar, published by Sofia Medical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.