Have a personal or library account? Click to login
Weight Drop Models of Traumatic Brain Injury in Rats Associated with Cognitive Disorders and Glial Scar Formation: A Systematic Review Cover

Weight Drop Models of Traumatic Brain Injury in Rats Associated with Cognitive Disorders and Glial Scar Formation: A Systematic Review

By: D. Wardhana,  H. Khotimah,  T. Nazwar and  Nurdiana  
Open Access
|Sep 2025

References

  1. Cortes D, Pera MF. The genetic basis of inter-individual variation in recovery from traumatic brain injury. NPJ Regen Med 2021;6(1):1-9. doi:10.1038/s41536-020-00114-y
  2. Zhou Y, Shao A, Yao Y, et al. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Communication and Signaling 2020;18(1). doi:10.1186/s12964-020-00549-2
  3. Muccigrosso MM, Ford J, Benner B, et al. Cognitive deficits develop 1 month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain Behav Immun 2016;54:95-109. doi:10.1016/j. bbi.2016.01.009
  4. Andelic N, Howe EI, Hellstrøm T, et al. Disability and quality of life 20 years after traumatic brain injury. Brain Behav 2018;8(7). doi:10.1002/brb3.1018
  5. Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019;13. doi:10.3389/fncel.2019.00528
  6. Leibinger M, Andreadaki A, Diekmann H, Fischer D. Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration. Cell Death Dis 2013;4(9). doi:10.1038/cddis.2013.310
  7. Ma X, Aravind A, Pfister BJ, et al. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019;56(8):5332-5345. doi:10.1007/s12035-018-1454-5
  8. Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019;36(11):1683-1706. doi:10.1089/neu.2018.6127
  9. Chakraborty N, Hammamieh R, Gautam A, et al. TBI weight-drop model with variable impact heights differentially perturbs hippocampus-cerebellum specific transcriptomic profile. Exp Neurol 2021;335. doi:10.1016/j.expneurol.2020.113516
  10. Kuo CW, Chang MY, Liu HH, et al. Cortical Electrical Stimulation Ameliorates Traumatic Brain Injury-Induced Sensorimotor and Cognitive Deficits in Rats. Front Neural Circuits 2021;15. doi:10.3389/fncir.2021.693073
  11. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery 2021:88;105906
  12. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017 Sep 21;358:j4008.
  13. Hooijmans CR, Rovers MM, De Vries RBM, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014;14(1). doi:10.1186/1471-2288-14-43
  14. Shishido H, Ueno M, Sato K, et al. Traumatic brain injury by weight-drop method causes transient amyloid-β deposition and acute cognitive deficits in mice. Behavioural Neurology 2019;2019. doi:10.1155/2019/3248519
  15. Yu Z, Xin Y, Xinran H, et al. Extracellular signal-regulated kinase-dependent phosphorylation of histone H3 serine 10 is involved in the pathogenesis of traumatic brain injury. Frontiers in Molecular Neuroscience 2022:1-26.
  16. Tian L, Guo R, Yue X, et al. Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats. Brain Res 2012; 1440:47-55. doi:10.1016/j. brainres.2011.12.059
  17. Cheng T, Yang B, Li D, et al. Wharton’s Jelly Transplantation Improves Neurologic Function in a Rat Model of Traumatic Brain Injury. Cell Mol Neurobiol 2015;35(5):641-649. doi:10.1007/s10571-015-0159-9
  18. Chen H, Chan YL, Nguyen LT, et al. Moderate traumatic brain injury is linked to acute behaviour deficits and long term mitochondrial alterations. Clin Exp Pharmacol Physiol 2016;43(11):1107-1114. doi:10.1111/1440-1681.12650
  19. Luo M ling, Pan L, Wang L, et al. Transplantation of NSCs Promotes the Recovery of Cognitive Functions by Regulating Neurotransmitters in Rats with Traumatic Brain Injury. Neurochem Res 2019;44(12):2765-2775. doi:10.1007/s11064-019-02897-z
  20. Xu P, Huang X, Niu W, et al. Metabotropic glutamate receptor 5 upregulation of Y-aminobutyric acid transporter 3 expression ameliorates cognitive impairment after traumatic brain injury in mice. Brain Res Bull 2022;183:104-115. doi:10.1016/j. brainresbull.2022.03.005
  21. Schreiber S, Lin R, Haim L, et al. Enriched environment improves the cognitive effects from traumatic brain injury in mice. Behavioural Brain Research 2014; 271:59-64. doi:10.1016/j. bbr.2014.05.060
  22. Stetter C, Lopez-Caperuchipi S, Hopp-Krämer S, et al. Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor xii deficient mice. Int J Mol Sci 2021;22(9). doi:10.3390/ijms22094855
  23. Shavit-Stein E, Gerasimov A, Aharoni S, et al. Unexpected role of stress as a possible resilience mechanism upon mild traumatic brain injury (mTBI) in mice. Molecular and Cellular Neuroscience 2021;111. doi:10.1016/j.mcn.2020.103586
  24. Heim LR, Bader M, Edut S, et al. The Invisibility of Mild Traumatic Brain Injury: Impaired Cognitive Performance as a Silent Symptom. J Neurotrauma 2017;34(17):2518-2528. doi:10.1089/neu.2016.4909
  25. Li D, Ma S, Guo D, et al. Environmental Circadian Disruption Worsens Neurologic Impairment and Inhibits Hippocampal Neurogenesis in Adult Rats After Traumatic Brain Injury. Cell Mol Neurobiol 2016;36(7):1045-1055. doi:10.1007/s10571-015-0295-2
  26. Lesniak A, Pick CG, Misicka A, et al. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016;101:506-518. doi:10.1016/j.neuropharm.2015.10.014
  27. Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol 2010;119(1):7-35. doi:10.1007/s00401-009-0619-8
  28. Liu S, Shen GY, Deng SK, et al. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen Res 2013;8(35):3334-3343. doi:10.3969/j.issn.1673-5374.2013.35.008
  29. Rachmany L, Tweedie D, Rubovitch V, et al. Cognitive impairments accompanying rodent mild traumatic brain injury involve p53-dependent neuronal cell death and are ameliorated by the tetrahydrobenzothiazole PFT-α. PLoS One 2013;8(11). doi:10.1371/journal.pone.0079837
  30. Yang SH, Gustafson J, Gangidine M, et al. A murine model of mild traumatic brain injury exhibiting cognitive and motor deficits. Journal of Surgical Research 2013;184(2):981-988. doi:10.1016/j.jss.2013.03.075
  31. Eakin K, Baratz-Goldstein R, Pick CG, et al. Enjcacy of N-acetyl cysteine in traumatic brain injury. PLoS One 2014;9(4). doi:10.1371/journal.pone.0090617
  32. Edut S, Rubovitch V, Rehavi M, et al. A Study on the Mechanism by Which MDMA Protects Against Dopaminergic Dys- function After Minimal Traumatic Brain Injury (mTBI) in Mice. Journal of Molecular Neuroscience 2014;54(4):684-697. doi:10.1007/s12031-014-0399-z
  33. Si D, Yang P, Jiang R, et al. Improved cognitive outcome after progesterone administration is associated with protecting hippocampal neurons from secondary damage studied in vitro and in vivo. Behavioural Brain Research 2014; 264:135-142. doi:10.1016/j.bbr.2014.01.049
  34. Baratz R, Tweedie D, Wang JY, et al. Transiently lowering tumor necrosis factor-aα synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation 2015;12(1). doi:10.1186/s12974-015-0237-4
  35. Baratz-Goldstein R, Deselms H, Heim LR, et al. Thioredoxinmimetic-peptides protect cognitive function after mild traumatic brain injury (mTBI). PLoS One 2016;11(6). doi:10.1371/journal.pone.0157064
  36. Ji X, Peng D, Zhang Y, et al. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Res 2017; 1659:88-95. doi:10.1016/j.brainres.2016.12.031
  37. Khandelwal VKM, Singh P, Ravingerova T, et al. Comparison of different osmotic therapies in a mouse model of traumatic brain injury. Pharmacological Reports 2017;69(1):176-184. doi:10.1016/j.pharep.2016.10.007
  38. Shishido H, Kishimoto Y, Kawai N, et al. Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer’s disease. Neurosci Lett 2016; 629:62-67. doi:10.1016/j.neulet.2016.06.066
  39. Benady A, Freidin D, Pick CG, Rubovitch V. GM1 ganglioside prevents axonal regeneration inhibition and cognitive deficits in a mouse model of traumatic brain injury. Sci Rep 2018;8(1). doi:10.1038/s41598-018-31623-y
  40. Bader M, Li Y, Tweedie D, et al. Neuroprotective Effects and Treatment Potential of Incretin Mimetics in a Murine Model of Mild Traumatic Brain Injury. Front Cell Dev Biol 2020;7. doi:10.3389/fcell.2019.00356
  41. Lecca D, Bader M, Tweedie D, et al. (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer’s disease challenged mice. Neurobiol Dis 2019;130. doi:10.1016/j.nbd.2019.104528
  42. Ahmed ME, Selvakumar GP, Kempuraj D, et al. Glia Maturation Factor (GMF) Regulates Microglial Expression Phenotypes and the Associated Neurological Deficits in a Mouse Model of Traumatic Brain Injury. Mol Neurobiol 2020;57(11):4438-4450. doi:10.1007/s12035-020-02040-y
  43. Farr SA, Cuzzocrea S, Esposito E, et al. Adenosine A3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 2020;17(1). doi:10.1186/s12974-020-02009-7
  44. Kempuraj D, Ahmed ME, Selvakumar GP, et al. Mast Cell Activation, Neuroinflammation, and Tight Junction Protein Derangement in Acute Traumatic Brain Injury. Mediators Inflamm 2020;2020. doi:10.1155/2020/4243953
  45. Sekar S, Viswas RS, Mahabadi HM, et al. Concussion/mild traumatic brain injury (Tbi) induces brain insulin resistance: a positron emission tomography (pet) scanning study. Int J Mol Sci 2021;22(16). doi:10.3390/ijms22169005
  46. Qubty D, Frid K, Har-Even M, et al. Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules 2022;27(9). doi:10.3390/molecules27092725
DOI: https://doi.org/10.2478/amb-2025-00065 | Journal eISSN: 2719-5384 | Journal ISSN: 0324-1750
Language: English
Page range: 78 - 88
Submitted on: Oct 27, 2024
Accepted on: Dec 17, 2024
Published on: Sep 9, 2025
Published by: Sofia Medical University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 D. Wardhana, H. Khotimah, T. Nazwar, Nurdiana, published by Sofia Medical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.