Have a personal or library account? Click to login
Protective Effects of Quercetin, Curcumin and Resveratrol in an in Vitro Model of Doxorubicin-Induced Cardiotoxicity Cover

Protective Effects of Quercetin, Curcumin and Resveratrol in an in Vitro Model of Doxorubicin-Induced Cardiotoxicity

Open Access
|Sep 2025

References

  1. Mohan UP, Tirupathi Pichiah PB, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – a review. Reprod. Toxicol. 2021;102:80-9. https://doi.org/10.1016/j.reprotox.2021.04.008
  2. Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. IJC Heart Vasc. 2024;50:101332. https://doi.org/10.1016/j.ijcha.2024.101332
  3. Linders AN, Dias IB, López Fernández T, et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging. 2024;10(1):9. https://doi.org/10.1038/s41514-024-00126-4
  4. Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci. 2024. https://doi.org/10.1016/j.jacbts.2024.02.001
  5. Rawat PS, Jaiswal A, Khurana A, et al. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021;139:111708. https://doi.org/10.1016/j.biopha.2021.111708
  6. Sheibani M, Azizi Y, Shayan M et al. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol. 2022;22(4):292-310. https://doi.org/10.1007/s12012-022-09647-2
  7. Wenningmann N, Knapp M, Ande A, et al. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219-32. https://doi.org/10.1124/mol.119.116979
  8. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900-5. https://doi.org/10.1056/NEJM199809243391301
  9. Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-8. https://doi.org/10.1016/j.toxlet.2019.02.011
  10. Chen RC, Xu XD, Zhi Liu X, et al. Total Flavonoids from Clinopodium chinense (Benth.) O. Ktze Protect against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo. Evid Based Complement Alternat Med. 2015;2015(1):472565. https://doi.org/10.1155/2015/472565
  11. Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525-33. https://doi.org/10.1136/hrt.2007.134345
  12. Rochette L, Guenancia C, Gudjoncik A, et al. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015;36(6):326-48. https://doi.org/10.1016/j.tips.2015.03.002
  13. Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063-76. https://doi.org/10.1007/s00204-016-1790-4
  14. Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by plant-derived polyphenols and nanomaterials. Environ Res. 2023:116896. doi:10.1016/j.envres.2023.116896
  15. Zhang J, Cui X, Yan Y, et al. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am J Transl Res. 2016;8(7):2862.
  16. Zhang Q, Wu L. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J Oncol. 2022;2022(1):7277562. doi:10.1155/2022/7277562
  17. Kuang Z, Ge Y, Cao L, et al. Precision treatment of anthracycline-induced cardiotoxicity: an updated review. Curr Treat Options Oncol. 2024;25(8):1038–54. doi:10.1007/s11864-024-01058-5
  18. Caspani F, Tralongo AC, Campiotti L, et al. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med. 2021;16(2):477–86. doi:10.1007/s11739-021-02790-5
  19. Hertog M, Bueno-de-Mesquita HB, Fehily AM, et al. Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev. 1996;5(9):673–7. doi:10.1002/ijc.2910500202
  20. Kalender Y, Kaya S, Durak D et al.. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol. 2012;33(2):141–8. doi:10.1016/j.etap.2011.11.005
  21. Annapurna A, Reddy CS, Akondi RB, Rao SR. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2009;61(10):1365–74. doi:10.1211/jpp/61.10.0003
  22. Glässer G, Graefe E, Struck F, et al. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 2002;9(1):33–40. doi:10.1078/0944-7113-00006
  23. Voycheva C, Popova T, Slavkova M, et al. Doxorubicin and quercetin double loading in modified MCM-41 lowered cardiotoxicity in H9c2 cardioblast cells in vitro. Bioengineering. 2023;10(6):637. doi:10.3390/bioengineering10060637
  24. Li S-z, Li K, Zhang J-h, Dong Z. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anti-Cancer Agents Med Chem. 2013;13(2):352–5. doi:10.2174/1 8715206113130200352
  25. Dong Q, Chen L, Lu Q, Sharma S, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi-1 expression. Br J Pharmacol. 2014;171(19):4440–54. doi:10.1111/bph.12810
  26. Dorostkar H, Haghiralsadat BF, Hemati M, et al. Reduction of doxorubicin-induced cardiotoxicity by co-administration of smart liposomal doxorubicin and free quercetin: in vitro and in vivo studies. Pharmaceutics. 2023;15(7):1920. doi:10.3390/pharmaceutics15071920
  27. Hashish FE, ElBatsh MM, El-Odemi MH, et al. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med J. 2021;34(1):333–9. doi:10.4103/mmj.mmj_16_20
  28. Aziz TA. Cardioprotective effect of quercetin and sitagliptin in doxorubicin-induced cardiac toxicity in rats. Cancer Manag Res. 2021;2349–57. doi:10.2147/CMAR.S318141
  29. El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats: insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell. 2024;87:102313. doi:10.1016/j.tice.2024.102313
  30. Thandapilly SJ, Wojciechowski P, Behbahani J, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010;23(2):192–6. doi:10.1038/ajh.2009.219
  31. Toklu HZ, Şehirli Ö, Erşahin M, et al. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J Pharm Pharmacol. 2010;62(12):1784–93. doi:10.1211/jpp.62.12.0009
  32. Chen L, Sun X, Wang Z, et al. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol Appl Pharmacol. 2024;482:116794. doi:10.1016/j. taap.2024.116794
  33. Dolinsky VW, Rogan KJ, Sung MM, et al. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab. 2013;305(2):E243–53. doi:10.1152/ajpendo.00284.2013.
  34. Hu LF, Lan HR, Li XM, Jin KT. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid Med Cell Longev. 2021;2021:2951697. doi:10.1155/2021/2951697
  35. Gu J, Hu W, Zhang D. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med. 2015;19(10):2324–8. doi:10.1111/jcmm.12647
  36. Lou Y, Wang Z, Xu Y, et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med. 2015;36(3):873-80. doi:10.3892/ijmm.2015.2234.
  37. Gu J, Hu W, Song ZP, et al. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int Immunopharmacol. 2016;32:1–7. doi:10.1016/j. intimp.2016.01.016.
  38. Hu Z. Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology. Medicine. 2024;103(7):e36593. doi:10.1097/MD.0000000000036593
  39. Mohammed HS, Hosny EN, Khadrawy YA, et al. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165665. doi:10.1016/j.bbadis.2020.165665
  40. Jain A, Rani V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci. 2018;205:97–106. doi:10.1016/j.lfs.2018.03.029
  41. Swamy AV, Gulliaya S, Thippeswamy A, et al. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol. 2012;44(1):73–7. doi:10.4103/0253-7613.92628
  42. Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol. 1998;124(3):425–7. doi:10.1038/sj.bjp.0702134
  43. Imbaby S, Ewais M, Essawy S, Farag N. Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Hum Exp Toxicol. 2014;33(8):800–13. doi:10.1177/0960327114539642
  44. Xu X, Chen K, Kobayashi S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther. 2012;341(1):183–95. doi:10.1124/jpet.112.197089
  45. Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy, and doxorubicin-induced cardiotoxicity. Life Sci. 2017;180:160–70. doi:10.1016/j.lfs.2017.04.007
  46. Purgatorio R, Boccarelli A, Pisani L, et al. A critical appraisal of the protective activity of polyphenolic antioxidants against iatrogenic effects of anticancer chemotherapeutics. Antioxidants. 2024;13(1):133. doi:10.3390/antiox13010133
  47. Sergazy S, Shulgau Z, Fedotovskikh G, et al. Cardioprotective effect of grape polyphenol extract against doxorubicin-induced cardiotoxicity. Sci Rep. 2020;10(1):14720. doi:10.1038/s41598-020-71570-9
  48. Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, et al. The protective role of phenolic compounds against doxorubi- cin-induced cardiotoxicity: a comprehensive review. Nutr Cancer. 2016;68(6):892–917. doi:10.1080/01635581.2016.1212795
  49. Sahu R, Dua TK, Das S, et al. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-kB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem Toxicol. 2019;125:503–519. doi:10.1016/j.fct.2019.01.040
  50. Hescheler J, Meyer R, Plant S, et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86. doi:10.1161/01.RES.69.6.1476
  51. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi:10.1124/pr.56.2.3
  52. Goodman J, Hochstein P. Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun. 1977;77(2):797–803. doi:10.1016/0006-291X(77)90446-4
  53. Gille L, Nohl H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med. 1997;23(5):775-82. doi:10.1016/S0891-5849(97)00264-0
  54. Ma W, Wei S, Zhang B, Li W. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol. 2020;8:434. doi:10.3389/fcell.2020.00434
  55. Koss-Mikołajczyk I, Todorovic V, Sobajic S, et al. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review. Int J Mol Sci. 2021;22(18):10037. doi:10.3390/ijms221810037
  56. Yi X, Wang Q, Zhang M, et al. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2024;178:117217. doi:10.1016/j.biopha.2024.117217
  57. Angeloni C, Spencer J, Leoncini E, et al. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie. 2007;89(1):73-82. doi:10.1016/j. biochi.2006.06.006
  58. Yang C, Zhu Q, Chen Y, et al. Review of the protective mechanism of curcumin on cardiovascular disease. Drug Design, Development and Therapy. 2024;165-92. doi:10.2147/DDDT.S344720
  59. Gu J, Fan Yq, Zhang Hl, et al. Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol. 2018;150:202-13. doi:10.1016/j. bcp.2018.02.017
  60. Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A. Intracellular ROS protection enjciency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol. 2016;44(1):128-34. doi:10.3 109/21691401.2015.1026690
  61. Yang F, Jiang X, Song L, et al. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep. 2016;35(3):1602-10. doi:10.3892/or.2016.4513
  62. Nouri A, Heidarian E, Amini-Khoei H, et al. Quercetin through mitigation of inflammatory response and oxidative stress exerts protective effects in rat model of diclofenac-induced liver toxicity. J Pharm Pharmacogn Res. 2019;7(3):200-12.
  63. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33.
  64. Zhou Y, Qian C, Tang Y, et al. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytotherapy Res. 2023;37(11):4999-5016. https://doi.org/10.1002/ptr.7966
  65. Russo GL, Russo M, Spagnuolo C. The pleiotropic flavonoid quercetin: from its metabolism to the inhibition of protein kinases in chronic lymphocytic leukemia. Food Funct.. 2014;5(10):2393-401. https://doi.org/10.1039/C4FO00413B
  66. Iqbal M. Flavonoid-Mediated Modulation of CYP3A Enzyme and P-Glycoprotein Transporter: Potential Effects on Bioavailability and Disposition of Tyrosine Kinase Inhibitors. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health: IntechOpen; 2020. doi:10.5772/inte-chopen.92712
  67. Liu X, Ye F, Wu J, et al. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr. Cancer. 2015;67(2):238-49. https://doi.org/10.1080/01635581.2015.989372
  68. Liu JP, Chen W, SchwarerAP, Li H. Telomerase in cancer immuno-therapy. Biochim. Biophys. Acta Rev. Cancer. 2010;1805(1):35-42. https://doi.org/10.1016/j.bbcan.2009.09.001
  69. Zhu P, Yang M, He H, et al. Curcumin attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by downregulating Notch signaling. Mol. Med. Rep.. 2019;20(2):1541-50. https://doi.org/10.3892/mmr.2019.10371
DOI: https://doi.org/10.2478/amb-2025-00061 | Journal eISSN: 2719-5384 | Journal ISSN: 0324-1750
Language: English
Page range: 53 - 62
Submitted on: Jan 14, 2025
|
Accepted on: May 9, 2025
|
Published on: Sep 9, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 B. Stoyanov, D. Stefanova, R. Bogdanova, V. Tzankova, published by Medical University - Sofia
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.