Have a personal or library account? Click to login
Drug-Induced Liver Toxicity Cover

References

  1. Bhakuni GS, Bedi O, Bariwal J, et al. Animal models of hepatotoxicity. Inflamm Res, 2016, 65(1):13–24. https://doi.org/10.1007/s00011-015-0883-0
  2. Andrade RJ, Robles M, Fernández-Castañer A, et al. Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World J Gastroenterol, 2017, 13(3):329-340. https://doi.org/10.3748/wjg.v13.i3.329
  3. Thompson WL, Takebe T. Human liver model systems in a dish. Dev Growth Differ, 2021, 63(1):47–58. https://doi.org/10.1111/dgd.12708
  4. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology, 2006, 43(1):54–62. https://doi.org/10.1002/hep.21060
  5. MacParland SA, Liu JC, Ma XZ, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun, 2018, 9(1):4383. https://doi.org/10.1038/s41467-018-06318-7
  6. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol, 2017, 27(21):1147–1151. https://doi.org/10.1016/j.cub.2017.09.019
  7. Simeonova R, Vitcheva V, Kondeva-Burdina M, et al. Hepato-protective and antioxidant effects of saponarin, isolated from Gypsophila trichotoma Wend. on paracetamol-induced liver damage in rats. BioMed Res Int, 2013, 2013:757126. https://doi.org/10.1155/2013/757126
  8. Croom E. Metabolism of xenobiotics of human environments. Prog Mol Biol Transl Sci, 2012, 112:31-88. https://doi.org/10.1016/B978-0-12-415813-9.00003-9
  9. Naik A, Beliþ A, Zanger UM, et al. Molecular interactions between NAFLD and xenobiotic metabolism. Front Genet, 2013, 4:2. https://doi.org/10.3389/fgene.2013.00002
  10. Hodgson E, Rose RL. Metabolism of toxicants. In: A Textbook of Modern Toxicology. 4th ed. E. Hodgson (Ed.). New Jersey, John Wiley & Sons, Inc., Hoboken, 2010, 115–155.
  11. Omiecinski CJ, Vanden Heuvel JP, Perdew GH, et al. Xeno-biotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxici-ties. Toxicol Sci, 2011, 120(1):49-75. https://doi.org/10.1093/toxsci/kfq338
  12. LeBlanc GA. Phase II—conjugation of toxicants. In: Molecular and biochemical toxicology. 4th ed. R. C. Smart, E. Hodgson (Eds.). New Jersey, John Wiley & Sons, Inc., Hoboken, 2008, 219–237.
  13. Tittarelli R, Pellegrini M, Scarpellini MG, et al. Hepatotoxicity of paracetamol and related fatalities. Eur Rev Med Pharmacol Sci, 2017, 21(1):95-101. https://www.europeanreview.org/wp/wp-content/uploads/95-101-Hepatotoxicity-of-paracetamoland-related-fatalities.pdf
  14. Leung L. From ladder to platform: a new concept for pain management. J Prim Health Care, 2012, 4:254-258. DOI:10.1071/HC12258
  15. Massart J, Begriche K, Fromenty B. Cytochrome P450 2E1 should not be neglected for acetaminophen-induced liver injury in metabolic diseases with altered insulin levels or glucose homeostasis. Clin Res Hepatol Gastroenterol, 2021, 45(1):101470. https://doi.org/10.1016/j.clinre.2020.05.018
  16. Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an update review. Arch Toxicol, 2015, 89:193-199. https://doi.org/10.1007/s00204-014-1432-2
  17. Begriche K, Penhoat C, Bernabeu-Gentey P, et al. Acetaminophen-induced hepatotoxicity in obesity and nonalcoholic fatty liver disease: a critical review. Livers, 2023, 3(1):33-53. https://doi.org/10.3390/livers3010003
  18. McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res, 2013, 30:2174-2187. https://doi.org/10.1007/s11095-013-1007-6
  19. Yoon E, Babar A, Choudhary M, et al. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol, 2016, 28:131-142. https://doi.org/10.14218/JCTH.2015.00052
  20. Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev, 2012, 44:88-106. https://doi.org/10.3109/03602532.2011.602688
  21. Meunier L, Larrey D. Recent advances in hepatotoxicity of non steroidal anti-inflammatory drugs. Annals of Hepatology, 2018, 17(2):187–191. https://doi.org/10.5604/01.3001.0010.8633
  22. Simmons DL, Botting RM, Hla T. Ciclooxigenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev, 2004, 56(3):387-437. https://doi.org/10.1124/pr.56.3.3
  23. Hoffmann C. COX-2 in brain and spinal cord implications for therapeutic use. Current medicinal chemistry, 2000, 7:1113-1120. https://doi.org/10.2174/0929867003374282
  24. Bacchi S, Palumbo P, Sponta A, et al. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm Antiallergy Agents Med Chem, 2012, 11(1):52–64. https://doi.org/10.2174/187152312803476255
  25. Lewis JH, Stine JG. Nonsteroidal antiinflammatory drugs and leukotriene receptor antagonists. In: Drug-induced liver disease. 3rd ed. N. Kaplowitz, D. L. DeLeve (Eds.). Paris, Elsevier, 2013, 369-401.
  26. O’Connor N, Dargan PI, Jones AL. Hepatocellular damage from non-steroidal anti-inflammatory drugs. QJM, 2003, 96(11):787–791. https://doi.org/10.1093/qjmed/hcg138
  27. Zoubek ME, Lucena MI, Andrade RJ, et al. Systematic review: ibuprofen-induced liver injury. Aliment Pharmacol Ther, 2020, 51(6):603-611. https://doi.org/10.1111/apt.15645
  28. Schmeltzer PA, Kosinski AS, Kleiner DE, et al. Liver injury from nonsteroi dal anti-inflammatory drugs in the United States. Liver Int, 2016, 36:603-609. https://doi.org/10.1111/liv.13032
  29. Nouri A, Heidarian E, Nikoukar M. Effects of N-acetyl cysteine on oxidative stress and TNF-Į gene expression in diclofenac-induced hepatotoxicity in rats. Toxicol Mech Methods, 2017, 27(8):561–567. https://doi.org/10.1080/15376516.2017.1334732
  30. Kalra V. Reyes Syndrome. Apollo Medicine, 2008, 5(2):106–110. https://doi.org/10.1016/S0976-0016(11)60130-0
  31. Sahu CR. Mechanisms involved in toxicity of liver caused by piroxicam in mice and protective effects of leaf extract of Hibiscus rosa-sinensis L. Clin Med Insights Arthritis Musculoskelet Disord, 2016, 9:9-13. https://doi.org/10.4137/CMAMD.S29463
  32. Badawi MS. Histological study of the protective role of ginger on piroxicam-induced liver toxicity in mice. J Chin Med Assoc, 2019, 82(1):11-18. https://doi.org/10.1016/j.jcma.2018.06.006
  33. Rainsford K. Anti-inflammatory drugs in the 21st century. Sub-cellular biochemistry, 2007, 42:3–27. https://doi.org/10.1007/1-4020-5688-5_1
  34. Famularo G, Gasbarrone L, Minisola G. Probable celecoxib-induced hepatorenal syndrome. Ann Pharmacother, 2012, 46:610–611. https://doi.org/10.1345/aph.1Q671
  35. Lee CH, Wang JD, Chen PC. Increased risk of hospitalization for acute hepatitis in patients with previous exposure to NSAIDs. Pharmacoepidemiol Drug Saf, 2010, 19:708–714. https://doi.org/10.1002/pds.1966
  36. Pugh AJ, Barve AJ, Falkner K, et al. Drug-induced hepatotoxicity or drug-induced liver injury. Clin Liver Dis, 2009, 13(2):277-294. https://doi.org/10.1016/j.cld.2009.02.008
  37. Appiah J, Prasad A, Shah V, et al. Amoxicillin-clavula-nate induced liver injury in a young female. Cureus, 2023, 15(1):e33445. https://doi.org/10.7759/cureus.33445
  38. Polson JE. Hepatotoxicity due to antibiotics. Clin Liver Dis, 2007, 11(3):549-561. https://doi.org/10.1016/j.cld.2007.06.009
  39. O’Donohue J, Oien KA, Donaldson P, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II associations. Gut, 2000, 47:717–720. https://doi.org/10.1136/gut.47.5.717
  40. Fox JC, Szyjkowski RS, Sanderson SO, et al. Progressive cholestatic liver disease associated with clarithromycin treatment. The Journal of Clinical Pharmacology, 2002, 42(6):676-680. https://doi.org/10.1177/00970002042006011
  41. Westphal JF, Brogard JM. Antibacterials and antifungal agents. In: Drug-induced liver disease. N. Kaplowitz, L. D. DeLeve (Eds.). New York, Marcel-Dekker, 2003, 471–504.
  42. Robles M, Toscano E, Cotta J, et al. Antibiotic-induced liver toxicity: mechanisms, clinical features and causality assessment. Curr Drug Saf, 2010, 5(3):212-222. https://doi.org/10.2174/157488610791698307
  43. Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 2002, 16(10):669-694. https://doi.org/10.2165/00023210-200216100-00003
  44. Smits JE, Wallenburg E, van Spanje A, et al. Valproate intoxication in a patient with blood valproate levels within therapeutic range. J Clin Psychiatry, 2017, 78(4):413-414. https://doi.org/10.4088/JCP.15cr10147
  45. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012.
  46. Patel AR, Nagalli S. Valproate Toxicity. Treasure Island (FL): Stat-Pearls [Updated 2021 Nov 25; cited 2022 March 4]. Available from: https://www.statpearls.com/ArticleLibrary/viewarticle/30391
  47. Mahmoud AM, Hussein OE, Hozayen WG, et al. Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARȖ and Nrf2: Protective effect of 18ȕ-Glycyrrhetinic acid. Chem Biol Interact, 2017, 270:59-72. https://doi.org/10.1016/j.cbi.2017.04.009
  48. Abo-Haded HM, Elkablawy MA, Al-Johani Z, et al. Hepato-protective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One, 2017, 12(3):e0174295. https://doi.org/10.1371/journal.pone.0174295
  49. Ezhilarasan D. Hepatotoxic potentials of methotrexate: understanding the possible toxicological molecular mechanisms. Toxicology, 2021, 458:152840. https://doi.org/10.1016/j.tox.2021.152840
  50. Santhakumar P, Roy A, Ganesh MK, et al. Ethanolic extract of Capparis decidua fruit ameliorates methotrexate-induced hepatotoxicity by suppressing oxidative stress and inflammation by modulating nuclear factor-kappa B signaling pathway. Pharmacogn Mag, 2021, 17:143-150. DOI:10.4103/pm.pm_402_20
  51. Combrink M, du Preez I. Metabolomics describes previously unknown toxicity mechanisms of isoniazid and rifampicin. Toxicology letters, 2020, 322:104-110. https://doi.org/10.1016/j.toxlet.2020.01.018
  52. Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid-induced hepatotoxicity: then and now. Br J Clin Pharmacol, 2016, 81(6):1030-1036. doi:10.1111/bcp.12885
  53. Jia ZL, Cen J, Wang JB, et al. Mechanism of isoniazid-induced hepatotoxicity in zebrafish larvae: activation of ROS-mediated ERS, apoptosis and the Nrf2 pathway. Chemosphere, 2019, 227:541-550. https://doi.org/10.1016/j.chemosphere.2019.04.026
  54. Lei S, Gu R, Ma X. Clinical perspectives of isoniazid-induced liver injury. Liver Research, 2021, 5:45-52. https://doi.org/10.1016/j.livres.2021.02.001
  55. Yang S, Hwang SJ, Park JY, et al. Association of genetic polymorphisms of CYP2E1, NAT2, GST, and SLCO1B1, with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis. BMJ Open, 2019, 9(8):e027940. https://doi.org/10.1136/bmjopen-2018-027940
  56. Santoso SB, Pribadi P, Irham LM. Isoniazid-induced liver injury risk level in different variants of N-acetyltransferase 2 (NAT2) polymorphisms: a literature review. Pharmacia, 2023, 70(4):973-981. https://doi.org/10.3897/pharmacia.70.e109869
DOI: https://doi.org/10.2478/amb-2024-0083 | Journal eISSN: 2719-5384 | Journal ISSN: 0324-1750
Language: English
Page range: 77 - 85
Submitted on: Jun 26, 2024
Accepted on: Jul 4, 2024
Published on: Nov 23, 2024
Published by: Sofia Medical University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 K. Stavrakeva, M. Popova, M. Esad, E. Apostolova, V. Kokova, M. Bacelova, A. Alakidi, A. Bivolarska, published by Sofia Medical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.