Have a personal or library account? Click to login
Changes in the Cytokine Profile in Patients During COVID-19 Infection Cover

Changes in the Cytokine Profile in Patients During COVID-19 Infection

Open Access
|Dec 2023

References

  1. Rangachev A, Marinov GK, Mladenov M. The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. Sci Rep, 2022, 12(1), 6333. doi. org/10.1038/s41598-022-11420-4.
  2. Nikolova M, Todorova Y, Emilova R, et al. Induction of humoral and cellular immune responses to COVID-19 mRNA and vector vaccines: A prospective cohort study in Bulgarian healthcare workers. J Med Virol, 2022, 94(5), 2008-2018. doi. org/10.1002/jmv.27572.
  3. Mihaylova A, Lesichkova S, Baleva M, et al. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J Med Virol, 2023, 95(1), e28360. doi.org/10.1002/jmv.28360.
  4. Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis. Eur J Clin Invest. 2021 Jan;51(1):e13429. doi: 10.1111/eci.13429.
  5. Yang L, Xie X, Tu Z. et al. The signal pathways and treatment of cytokine storm in COVID-19. Sig Transduct Target Ther, 2021, 6, 255. doi.org/10.1038/s41392-021-00679-0.
  6. Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transpl Proceed. 1993 Feb;25(1 Pt 2):1216-1217. doi. org/10.1016/0952-7915(93)90139-J.
  7. Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32. doi: 10.1128/MMBR.05015-11. doi.org/10.3390/microorganisms9102159.
  8. Centers for Disease Control and Prevention. Clinical Spectrum of SARS-CoV-2 Infection Last Updated: March 6, 2023.
  9. Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microb. 2016;19(2):181-193. doi: 10.1016/j. chom.2016.01.007.
  10. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. doi: 10.1016/j. cell.2020.04.026.
  11. Luo, Xiao, Hua, et al. T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93.3 (2021): e12989. doi: 10.1111/sji.12989.
  12. Coppock D, Zurlo CE, Meloni JM, et al. Interferon gamma release assay mitogen responses in COVID-19. Infect Dis Clin Pract, 2022, 30(1), p.e1085. doi: 10.1097/ IPC.0000000000001085.
  13. Gadotti AC, de Castro Deus M, Telles JP, et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020 Nov;289:198171. doi: 10.1016/j.virusres.2020.198171.
  14. Del Valle DM, Kim-Schulze S, Huang HH et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med, 2020, 26, 1636–1643. doi: 10.1038/s41591-020-1051-9.
  15. Zhang Z, Ai G, Chen L, et al. Associations of immunological features with COVID-19 severity: a systematic review and meta-analysis. BMC infectious diseases, 2021, 21, 1-9. doi: 10.1186/s12879-021-06457-1.
  16. Liu Y, Chen D, Hou J et al. An inter-correlated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine, 2021, 138, 155365. doi: 10.1016/j. cyto.2020.155365.
  17. Ghazavi A, Ganji A, Keshavarzian N et al. Cytokine profile and disease severity in patients with COVID-19. Cytokine, 2021, 137, 155323. doi: 10.1016/j.cyto.2020.155323.
  18. Bretscher PA. A strategy to improve the efficacy of vaccination against tuberculosis and leprosy. Immunol Today. 1992 Sep;13(9):342-5. doi: 10.1016/0167-5699(92)90168-7.
  19. Chang Y, Bai M, You Q. Associations between Serum Interleukins (IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10) and Disease Severity of COVID-19: A Systematic Review and Meta-Analysis. BioMed Res Int, 2022. doi: 10.1155/2022/2755246.
  20. Masso-Silva JA, Moshensky A, Lam MTY, et al. Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clin Infect Dis. 2022 Feb 11;74(3):479-489. doi: 10.1093/cid/ciab437.
  21. Kaiser R, Leunig A, Pekayvaz K, et al. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight. 2021 Sep 22;6(18):e150862. doi: 10.1172/jci.insight.
  22. Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps, Mediators of Inflammation, vol. 2020, Article ID 8829674, 7 pages, 2020. doi. org/10.1155/2020/8829674.
  23. Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Frontiers Immunol, 2013, 4, 1. doi. org/10.3389/fimmu.2013.00001.
  24. Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012 Jul 19;12(1):109-16. doi: 10.1016/j.chom.2012.05.015.
  25. Lu L, Zhang H, Dauphars DJ, He YW. A potential role of interleukin 10 in COVID-19 pathogenesis. Trends in Immunology, 2021, 42(1), 3-5. doi: 10.1016/j.it.2020.10.012
DOI: https://doi.org/10.2478/amb-2023-0036 | Journal eISSN: 2719-5384 | Journal ISSN: 0324-1750
Language: English
Page range: 5 - 12
Submitted on: May 29, 2023
Accepted on: Sep 12, 2023
Published on: Dec 15, 2023
Published by: Sofia Medical University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 N. Ivanov, S. Mihailova, R. Bilyukov, C. Popov, T. Kundurzhiev, E. Naumova, published by Sofia Medical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.