Have a personal or library account? Click to login
The Endogenous Cannabinoid and the Nitricoxidergic Systems Differently Influence Heat and Cold Stress-Induced Analgesia Cover

The Endogenous Cannabinoid and the Nitricoxidergic Systems Differently Influence Heat and Cold Stress-Induced Analgesia

By: H. Nocheva,  Z. Sabit and  E. Grigorov  
Open Access
|May 2021

References

  1. 1. Pacàk K, Palkovits M. Stressor Specificity of Central Neuroendocrine Responses: Implications for Stress-Related Disorders. Endo Rev. 2001; 22(4):502-548. https://doi.org/10.1210/edrv.22.4.0436.10.1210/edrv.22.4.0436
  2. 2. Butler RK, Finn DP. Stress-induced analgesia. Progress in Neurobiology. 2009; 88(3):184-202. https://doi.org/10.1016/j.pneurobio.2009.04.003.10.1016/j.pneurobio.2009.04.003
  3. 3. Galina ZH, Sutherland CJ, Amit Z. Effects of heat-stress on behavior and the pituitary adrenal axis in rats. Pharmacol Biochem Behav. 1983; 19(2):251-256. https://doi.org/10.1016/0091-3057(83)90048-5.10.1016/0091-3057(83)90048-5
  4. 4. Finn DP. Endocannabinoid-mediated modulation of stress responses: Physiological and pathophysiological significance. Immunobiology. 2010; 215(8):629-646. https://doi.org/10.1016/j.imbio.2009.05.011.10.1016/j.imbio.2009.05.01119616342
  5. 5. Cury Y, Picolo G, Pacciari GV, et al. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011; 25(3):243-254. https://doi.org/doi:10.1016/j.niox.2011.06.004.10.1016/j.niox.2011.06.00421723953
  6. 6. Devane WA, Dysarz FA, Johnson MR, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988; 34:605-613.
  7. 7. Matsuda LA, Lolait SJ, Brownstein M et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990; 346(6284):561-564. https://doi.org/10.1038/346561a0.10.1038/346561a02165569
  8. 8. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993; 365:61-65. https://doi.org/10.1038/365061a0.10.1038/365061a07689702
  9. 9. Svíženská I, Dubový P, Šulcová A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures – a short review, Pharmacol Biochem Behav. 2008; 90(4):501-511. https://doi.org/10.1016/j.pbb.2008.05.010.10.1016/j.pbb.2008.05.01018584858
  10. 10. Herkenham M, Lynn AB, Johnson MR, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991; 11(2):563-583. https://doi.org/10.1523/JNEUROSCI.11-02-00563.1991.10.1523/JNEUROSCI.11-02-00563.1991
  11. 11. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system, in: R.G. Pertwee (Ed.), Cannabinoids. Handbook of Experimental Pharmacology 2005; vol. 168, Springer, Berlin, Heidelberg, pp. 299-325. https://doi.org/10.1007/3-540-26573-2_10.10.1007/3-540-26573-2_1016596779
  12. 12. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992; 258(5090):946-949. https://doi.org/10.1126/science.1470919.10.1126/science.14709191470919
  13. 13. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995; 215(1):89-97. https://doi.org/10.1006/bbrc.1995.2437.10.1006/bbrc.1995.24377575630
  14. 14. Wilson RI and Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002; 296:678-682. https://doi.org/10.1126/science.1063545.10.1126/science.106354511976437
  15. 15. Starowicz K, Malek N, Przewlocka B. Cannabinoid receptors and pain. WIREs: Membr. Transp. Signal. 2013; 2(3):121-132. https://doi.org/10.1002/wmts.83.10.1002/wmts.83
  16. 16. Nakazi MU, Bauer T, Nickel M, et al. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000; 361(1):19-24. https://doi.org/10.1007/s002109900147.10.1007/s00210990014710651142
  17. 17. Walker JM, Huang SM, Strangman NM, et al. Pain modulation by release of the endogenous cannabinoid anandamide. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96(21):12198-12203. https://dx.doi.org/10.1073%2Fpnas.96.21.12198.10.1073/pnas.96.21.121981843510518599
  18. 18. Gorzalka BB, Hill MN, Hillard CJ. Regulation of endocannabinoid signaling by stress: implications for stress-related affective disorders. Neurosci Biobehav Rev. 2008; 32(6):1152-1160. https://dx.doi.org/10.1016/j.neubiorev.2008.03.004.10.1016/j.neubiorev.2008.03.00418433869
  19. 19. Woodhams SG, Chapman V, Finn DP et al. The cannabinoid system and pain, Neuropharmacology 2017; online, doi: 10.1016/j. neuropharm.2017.06.015.
  20. 20. Li Y, Zhang L, Wu Y, Zheng Q, et al. Cannabinoids-induced peripheral analgesia depends on activation of BK channels. Brain Research 2019; 17(11):23-28.10.1016/j.brainres.2019.01.00730615887
  21. 21. Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chemico-Biological Interactions 2018; 293:77-88. https://dx.doi.org/10.1016/j.cbi.2018.07.018.10.1016/j.cbi.2018.07.01830040916
  22. 22. Paradise WA, Vesper BJ, Goel A, et al. Nitric Oxide: Perspectives and Emerging Studies of a Well Known Cytotoxin. In J Mol Sci. 2010; 11(7):2715-2745. https://dx.doi.org/10.3390/ijms11072715.10.3390/ijms11072715292056320717533
  23. 23. Freire MA, Guimaraes JS, Leal WG, et al. Pain modulation by nitric oxide in the spinal cord. Front Neurosci. 2009; 3(2):175-181. https://dx.doi.org/10.3389%2Fneuro.01.024.2009.10.3389/neuro.01.024.2009275162320011139
  24. 24. Esplugues JV. NO as a signalling molecule in the nervous system. Br J Pharmacol. 2002; 135:1079-1095. https://dx.doi.org/10.1038/sj.bjp.0704569.10.1038/sj.bjp.0704569157323311877313
  25. 25. Iziara FF, Galdino PM, De Oliveira LP, et al. Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide. 2015; 47:17-24. https://dx.doi.org/10.1111/cbdd.12838.10.1111/cbdd.1283827526659
  26. 26. Hervera A, Leánez S, Pol O. The inhibition of the nitric oxide–cGMP–PKG–JNK signaling pathway avoids the development of tolerance to the local antiallodynic effects produced by morphine during neuropathic pain. Europ J of Pharmac. 2012; 685(1-3):42-51. https://dx.doi.org/10.1016/j.ejphar.2012.04.009.10.1016/j.ejphar.2012.04.00922546233
  27. 27. Luce V, Solari JF, Rettori V, et al. The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide. Regulatory Peptides. 2014; 188:31-39. https://doi.org/10.1016/j.regpep.2013.12.004.10.1016/j.regpep.2013.12.00424342802
  28. 28. Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: the plant of the thousand and one molecules. Front. Plant Sci. 2016; online, https://doi.org/10.3389/fpls.2016.00019.10.3389/fpls.2016.00019474039626870049
  29. 29. Mastinu A, Premoli M, Ferrari-Toninelli G, et al. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm. Mol. Biol. Clin. Investig. 2018; online, https://doi.org/10.1515/hmbci-2018-0013.10.1515/hmbci-2018-001329601300
  30. 30. Bonini SA, Premolia M, Tambaro S, et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol 2018; 227:300-315. https://doi.org/10.1016/j.jep.2018.09.004.10.1016/j.jep.2018.09.00430205181
  31. 31. Seth, B. Non-opioid analgesics. Anaesthesia & Intensive Care Medicine 2019; 20(8):456-459. doi:10.1016/j.mpaic.2019.06.001.10.1016/j.mpaic.2019.06.001
  32. 32. Zou S, Kumar U. Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hippocampus. Brain research 2015; 1622:114-126. https://doi.org/10.1016/j.brainres.2015.06.021.10.1016/j.brainres.2015.06.02126115586
  33. 33. Bujalska-Zadrozny M, de Corde´ A, Pawlik K. Influence of nitric oxide synthase or cyclooxygenase inhibitors on cannabinoids activity in streptozotocin-induced neuropathy. Pharmacol Reports. 2015; 67(2):209-216. https://doi.org/10.1016/j.pharep.2014.08.023.10.1016/j.pharep.2014.08.02325712641
  34. 34. Bujalska M. Effect of cannabinoid receptor agonists on streptozotocin-induced hyperalgesia in diabetic neuropathy. Pharmacology. 2008; 82(3):193-200. https://doi.org/10.1159/000156485.10.1159/00015648518810243
  35. 35. Szabadits E, Cserep C, Ludanyi A, et al. Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitricoxide signaling. J. Neurosci. 2007; 27:8101-8111.10.1523/JNEUROSCI.1912-07.2007667273417652601
  36. 36. Dvorácskó S, Tömböly C, Berkecz R, Keresztes A. Investigation of receptor binding and functional characteristics of hemopressin (1-7). Neuropeptides 2016; 58:15-22. doi: 10.1016/j.npep.2016.02.001.10.1016/j.npep.2016.02.00126895730
  37. 37. Wang P, Zheng T, Zhang M, et al. Antinociceptive effects of the endogenous cannabinoid peptide agonist VD-hemopressin(β) in mice. Brain Research Bulletin 2018; 139:48-55. https://doi.org/10.1016/j.brainresbull.2018.02.003.10.1016/j.brainresbull.2018.02.00329425797
DOI: https://doi.org/10.2478/amb-2021-0005 | Journal eISSN: 2719-5384 | Journal ISSN: 0324-1750
Language: English
Page range: 34 - 39
Accepted on: Feb 15, 2020
Published on: May 5, 2021
Published by: Sofia Medical University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 H. Nocheva, Z. Sabit, E. Grigorov, published by Sofia Medical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.