Have a personal or library account? Click to login
Multiscale Failure Analysis and Micromechanical Fem Modeling of Type IV Composite Pressure Vessel Considering Different Fibre Shapes and Dehomogenisation Cover

Multiscale Failure Analysis and Micromechanical Fem Modeling of Type IV Composite Pressure Vessel Considering Different Fibre Shapes and Dehomogenisation

Open Access
|Dec 2025

Figures & Tables

Fig. 1.

Composite analysis scales
Composite analysis scales

Fig.2.

Construction of composite pressure vessel type IV
Construction of composite pressure vessel type IV

Fig. 3.

Scan of the actual fibre structure: a) multifiber view, b) single fibre zoom
Scan of the actual fibre structure: a) multifiber view, b) single fibre zoom

Fig. 4.

a) RVE with circular fibre: b) RVE with elliptical fibre
a) RVE with circular fibre: b) RVE with elliptical fibre

Fig. 5.

RVE with actual fibre: a) geometry, b) mesh
RVE with actual fibre: a) geometry, b) mesh

Fig. 6.

Numbering of RVE vertices
Numbering of RVE vertices

Fig. 7.

Displacement distributions of RVE: a) tensile in X-direction, b) tensile in Y-direction, c) tensile in Z-direction
Displacement distributions of RVE: a) tensile in X-direction, b) tensile in Y-direction, c) tensile in Z-direction

Fig. 8.

Displacement distributions of RVE: a) shear in XY-plane, b) shear in XZ-plane, c) shear in YZ-plane
Displacement distributions of RVE: a) shear in XY-plane, b) shear in XZ-plane, c) shear in YZ-plane

Fig. 9.

Equivalent stress distributions of RVE: a) tensile X-direction, b) tensile Y-direction, c) tensile Z-direction
Equivalent stress distributions of RVE: a) tensile X-direction, b) tensile Y-direction, c) tensile Z-direction

Fig. 10.

Equivalent stress distributions of RVE: a) shear in XY-plane, b) shear in XZ-plane, c) shear in YZ-plane
Equivalent stress distributions of RVE: a) shear in XY-plane, b) shear in XZ-plane, c) shear in YZ-plane

Fig.11.

Model displacements to calculate Young's modulus, Poisson's ratio and shear modulus
Model displacements to calculate Young's modulus, Poisson's ratio and shear modulus

Fig. 12.

Solid model of composite pressure vessel
Solid model of composite pressure vessel

Fig.13.

Composite thickness distribution at dome section for first 8 helical layers
Composite thickness distribution at dome section for first 8 helical layers

Fig. 14.

Finite element mesh on 3D tank model
Finite element mesh on 3D tank model

Fig. 15.

Thickness distribution of composite at dome part in 3D model: a) Wang method, b) numerical model
Thickness distribution of composite at dome part in 3D model: a) Wang method, b) numerical model

Fig. 16.

Quality of finite elements mesh graph: a) aspect ratio, b) element quality, c) skewness d) Jacobian ratio
Quality of finite elements mesh graph: a) aspect ratio, b) element quality, c) skewness d) Jacobian ratio

Fig. 17.

Boundary conditions
Boundary conditions

Fig. 18.

Distribution of resultant: a) displacement b) strain
Distribution of resultant: a) displacement b) strain

Fig.19.

Distribution of Huber von-Mises stress in a) closed boss b) open boss [MPa]
Distribution of Huber von-Mises stress in a) closed boss b) open boss [MPa]

Fig. 20.

Distribution of Huber von-Mises stress in the polyamide liner [MPa]
Distribution of Huber von-Mises stress in the polyamide liner [MPa]

Fig. 21.

Puck failure distribution: a) fibre, b) matrix
Puck failure distribution: a) fibre, b) matrix

Fig. 22.

Hashin failure distribution: a) fibre, b) matrix
Hashin failure distribution: a) fibre, b) matrix

Fig. 23.

Tsai Wu criterion failure distribution
Tsai Wu criterion failure distribution

Fig. 24.

Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 25.

Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 26.

Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 27.

Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 28.

Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 29.

Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 30.

Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 31.

Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 32.

Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 33.

Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 34.

Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Puck fibre failure criterion strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 35.

Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Puck matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 36.

Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Hashin fibre failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 37.

Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Hashin matrix failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Fig. 38.

Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix
Stress distributions for maximum Tsai Wu failure criteria strains: a) Equivalent Huber von-Mises stress for RVE, b) normal X-direction stress for fibre, c) Equivalent Huber von-Mises stress for matrix

Maximum values of damage index for each winding angle layer

Angle [°]Failure
100,759
14,50,547
190,678
230,498
27,50,536
31,50,566
36,50,581
>900,580

Displacement conditions for walls

Surface X = 0Surface Y = 0Surface Z = 0
u(0,y,z) = εxy 1 ε.xzzv(0,y,z) = εyyy + εyzzw(0,y,z) = εyzy + εzzzu(x, 0, z) = εxxx + εxzzv(x, 0, z) = εxyx + εyzzw(x, 0, z) = εxzx + εzzzu(x,y,0) = εxxx + εxyyv(x,y,0) = εxyx + εyyyw(x,y,0) = εxzx + εyzy
Surface X = LxSurface Y = LxSurface Z = Lx
u(Lx,y,z) = εxxLx + εxyy + εxzzv(Lx,y,z) = εxyεx + εyyy + εyzZw(Lx,y,z) = εxzLx + εyzy + εzzzu(x, Ly, z) = εxxx + εxyLy + εxzzv(x, Ly, z) = εxyx + εyyLy + εyzzw(x, Ly, z) = εxzx + εyzLy + εzzzu(x,y,Lz) = εxxx + εxyy + εxzLzv(x,y,Lz) = εxyx + εyyy + εyzLzw(x,y,Lz) = εxzx + εyzy + εzzLz

PBC equations for shear in XZ-plane

SurfacesEdgesVertices
ux3478ux1256=0u_x^{3478} - u_x^{1256} = 0ux34ux12=0,ux78ux56=0\matrix{ {u_x^{34} - u_x^{12} = 0,} \hfill & {u_x^{78} - u_x^{56} = 0} \hfill \cr } ux4ux1=0u_x^4 - u_x^1 = 0
uy2367uy1458=0u_y^{2367} - u_y^{1458} = 0uy37uy48=0,uy26uy15=0uy23uy14=0,uy67uy58=0\matrix{ {u_y^{37} - u_y^{48} = 0,} \hfill & {u_y^{26} - u_y^{15} = 0} \hfill \cr {u_y^{23} - u_y^{14} = 0,} \hfill & {u_y^{67} - u_y^{58} = 0} \hfill \cr } uy3uy4=0,uy2uy1=0uy6uy5=0,uy7uy8=0\matrix{ {u_y^3 - u_y^4 = 0,} \hfill & {u_y^2 - u_y^1 = 0} \hfill \cr {u_y^6 - u_y^5 = 0,} \hfill & {u_y^7 - u_y^8 = 0} \hfill \cr }
uz5678uz1234=0u_z^{5678} - u_z^{1234} = 0uz78uz34=0,uz56uz12=0\matrix{ {u_z^{78} - u_z^{34} = 0,} \hfill & {u_z^{56} - u_z^{12} = 0} \hfill \cr } uz5uz1=0u_z^5 - u_z^1 = 0

PBC equations for shear in YZ-plane

SurfacesEdgesVertices
ux5678ux1234=0u_x^{5678} - u_x^{1234} = 0ux58ux14=0,ux67ux23=0ux78ux34=0,ux56ux12=0\matrix{ {u_x^{58} - u_x^{14} = 0,} \hfill & {u_x^{67} - u_x^{23} = 0} \hfill \cr {u_x^{78} - u_x^{34} = 0,} \hfill & {u_x^{56} - u_x^{12} = 0} \hfill \cr } ux5ux1=0,ux6ux2=0ux8ux4=0,ux7ux3=0\matrix{ {u_x^5 - u_x^1 = 0,} \hfill & {u_x^6 - u_x^2 = 0} \hfill \cr {u_x^8 - u_x^4 = 0,} \hfill & {u_x^7 - u_x^3 = 0} \hfill \cr }
uy3478uy1256=0u_y^{3478} - u_y^{1256} = 0uy48uy15=0,uy37uy26=0\matrix{ {u_y^{48} - u_y^{15} = 0,} \hfill & {u_y^{37} - u_y^{26} = 0} \hfill \cr } uy4uy1=0u_y^4 - u_y^1 = 0
uz2367uz1458=0u_z^{2367} - u_z^{1458} = 0uz26uz15=0,uz37uz48=0\matrix{ {u_z^{26} - u_z^{15} = 0,} \hfill & {u_z^{37} - u_z^{48} = 0} \hfill \cr } uz2uz1=0u_z^2 - u_z^1 = 0

PBC equations for shear in XY-plane

SurfacesEdgesVertices
ux2367ux1458=0u_x^{2367} - u_x^{1458} = 0ux23ux14=0,ux67ux58=0\matrix{ {u_x^{23} - u_x^{14} = 0,} \hfill & {u_x^{67} - u_x^{58} = 0} \hfill \cr } ux2ux1=0u_x^2 - u_x^1 = 0
uy5678uy1234=0u_y^{5678} - u_y^{1234} = 0uy67uy23=0,uy58uy14=0\matrix{ {u_y^{67} - u_y^{23} = 0,} \hfill & {u_y^{58} - u_y^{14} = 0} \hfill \cr } uy5uy1=0u_y^5 - u_y^1 = 0
uz3478uz1256=0u_z^{3478} - u_z^{1256} = 0uz48uz15=0,uz37uz26=0uz34uz12=0,uz78uz56=0\matrix{ {u_z^{48} - u_z^{15} = 0,} \hfill & {u_z^{37} - u_z^{26} = 0} \hfill \cr {u_z^{34} - u_z^{12} = 0,} \hfill & {u_z^{78} - u_z^{56} = 0} \hfill \cr } uz4uz1=0,uz3uz2=0uz7uz6=0,uz8uz5=0\matrix{ {u_z^4 - u_z^1 = 0,} \hfill & {u_z^3 - u_z^2 = 0} \hfill \cr {u_z^7 - u_z^6 = 0,} \hfill & {u_z^8 - u_z^5 = 0} \hfill \cr }

Layup configuration

Number of layersAngle [°]Quantity
210x2
390
114,5
119
390
123
127,5
390
131,5
136,5
390
210x2
390
114,5
119
390
123
127,5
390
210x1

Strain values in the most loaded elements

Failure criteria/strainεxxεyyεzzεxyεxzεyz
Puck fibre7,986 · 10−3–1,011 · 10−22,073 · 10−3–9,570 · 10−52,034 · 10−46,786 · 10−4
Puck matrix4,521 · 10–32,370 · 10−3–3,099 · 10−3–8,194 · 10−3–8,872 · 10−33,176 · 10−3
Hashin fibre2,230 · 10–3–6,224 · 10−3–5,999 · 10−31,383 · 10−21,201 · 10−38,919 · 10−3
Hashin matrix4,522 · 10−32,370 · 10−3–3,098 · 10−3–8,194 · 10−3–8,875 · 10−33,171 · 10−3
Tsai Wu4,521 · 10−32,370 · 10−3–3,099 · 10−3–8,194 · 10−3–8,872 · 10−33,176 · 10−3

Mechanical strength properties of carbon epoxy composite

PropertiesValues [MPa]
Longitudinal Tensile Strength Xt2860
Transverse Tensile Strength Yt,Zt81
Longitudinal Compressive Strength Xc-1450
Transverse Compressive Strength Yc,Zc-268,5
Shear Strength in fiber plane S12, S13136
Sherar strength out of fiber plane S2387

Mechanical properties of carbon fibre and resin epoxy

Carbon fiber T700 (9)Epoxy resin (9)
PropertiesValuesPropertiesValues
Ex[GPa]230Tensile modulus Em[GPa]>3,2
Ey, Ez[GPa]28
Gxy, Gxz[GPa]50Shear modulus Gm[GPa]1,17
Gyz[GPa]10
vxy, vxz0,23Poisson’s ratio vm0,35
vyz0,3

Mechanical properties of 6061 and PA6 [23, 24]

Properties6061-T6PA6
Tensile Modulus [GPa]68,91,4
Poisson's ratio0,330,35
Yield Strength [MPa]27676
Tensile Strength [MPa]310-

Winding angles correspond to variable polar radius for helical layers

Winding angleα [°]Total number of layersRadius of polar openings r0 [mm]
101030
14,5442
19454
23466
27,5478
31,5290
36,52102

Mechanical properties of carbon epoxy composite

PropertiesMaterial Designer (Circular fibre)PBC equations in MechanicalDifference between actual fibre and circular fibre [%]
Circular fibreEliptical fibreActual fibre
E1[GPa]139,345139,012138,972142,5022,51
E2[GPa]8,2428,1958,2918,6125,09
E3[GPa]8,2428,1958,2888,6205,19
G12[GPa]4,6574,6294,9005,12210,65
G23[GPa]3,9433,9364,4544,1535,51
G13[GPa]4,6574,6294,8995,14311,10
v120,2710,2710,2720,2700,37
v230,5010,4940,4680,4666,99
v130,2710,2710,2720,2700,37

PBC equations for tensile in X, Y, and Z direction

SurfacesEdgesVertices
ux5678ux1234=0u_x^{5678} - u_x^{1234} = 0ux56ux12=0,ux78ux34=0,ux58ux14=0,ux67ux23=0\matrix{ {u_x^{56} - u_x^{12} = 0,} \hfill & {u_x^{78} - u_x^{34} = 0,} \hfill \cr {u_x^{58} - u_x^{14} = 0,} \hfill & {u_x^{67} - u_x^{23} = 0} \hfill \cr } ux5ux1=0,ux6ux2=0,ux8ux4=0,ux7ux3=0\matrix{ {u_x^5 - u_x^1 = 0,} \hfill & {u_x^6 - u_x^2 = 0,} \hfill \cr {u_x^8 - u_x^4 = 0,} \hfill & {u_x^7 - u_x^3 = 0} \hfill \cr }
uy2367uy1458=0u_y^{2367} - u_y^{1458} = 0uy23uy14=0,uy67uy58=0,uy26uy15=0,uy37uy48=0\matrix{ {u_y^{23} - u_y^{14} = 0,} \hfill & {u_y^{67} - u_y^{58} = 0,} \hfill \cr {u_y^{26} - u_y^{15} = 0,} \hfill & {u_y^{37} - u_y^{48} = 0} \hfill \cr } uy2uy1=0,uy6uy5=0,uy3uy4=0,uy7uy8=0\matrix{ {u_y^2 - u_y^1 = 0,} \hfill & {u_y^6 - u_y^5 = 0,} \hfill \cr {u_y^3 - u_y^4 = 0,} \hfill & {u_y^7 - u_y^8 = 0} \hfill \cr }
uz3478uz1256=0u_z^{3478} - u_z^{1256} = 0uz78uz56=0,uz34uz12=0,uz48uz15=0,uz37uz26=0\matrix{ {u_z^{78} - u_z^{56} = 0,} & {u_z^{34} - u_z^{12} = 0,} \cr {u_z^{48} - u_z^{15} = 0,} & {u_z^{37} - u_z^{26} = 0} \cr } uz4uz1=0,uz8uz5=0,uz7uz6=0,uz3uz2=0]\matrix{ {u_z^4 - u_z^1 = 0,} \hfill & {u_z^8 - u_z^5 = 0,} \hfill \cr {u_z^7 - u_z^6 = 0,} \hfill & {u_z^3 - u_z^2 = 0} \hfill \cr }

Maximum stress results from dehomogenisation for different fibre geometries

Failure criteriaStress limit [MPa]Circular fibreEliptical fibreActual fibre
fibreresinRVEfibreresinRVEfibreresinRVEfibreresin
Puck fibre49008018681832,989,91795,4176090,519231820133,4
Puck matrix1104,81128,1571027,4106755,11095,61133,676,3
Hashin fibre676,1553,2154,4680,9563,35177,21110,7580,2238,3
Hashin matrix1104,91128,2571107,91120,353,91188,91204,5138,7
Tsai wu1104,81128,1571107,81120,2541188,81204,4138,7
DOI: https://doi.org/10.2478/ama-2025-0071 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 626 - 643
Submitted on: Jul 12, 2025
Accepted on: Oct 29, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Piotr MUŚKO, Dariusz M. PERKOWSKI, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.