Fig. 1.

Fig.2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig.11.

Fig. 12.

Fig.13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig.19.
![Distribution of Huber von-Mises stress in a) closed boss b) open boss [MPa]](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/694828ee7c29e05adc524c36/j_ama-2025-0071_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKMJR6GLTO%2F20251221%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251221T232347Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEB0aDGV1LWNlbnRyYWwtMSJIMEYCIQCyd7L0wNdYN1Mko1FO%2FYSkmixRp3AhYgJxhTYhVzjN8QIhAL6pxite7MLtNwsQw%2Be0pcEOyNGY%2F%2BXDNLbXRT6kizw%2FKsUFCOb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQAhoMOTYzMTM0Mjg5OTQwIgxhsyChQTna5KjofRUqmQWg%2Fok9GYUkCwHkKGjHuS9X4BEk7aOsCIK0uoG6aOOtIOdI1OgH5dKTVYL4nCxn2gwXF%2FYV7iRs%2BfdpCfNfn%2F2OtdVLK7dc7AtBF4qrKWwyeRBCp1a4DRhpXPHOeNAGeVtVA8Dz41VsoEL%2FeW%2BpuF6dXTbvSdis7W3K9%2Bj0S%2F0XvFKGG5Lm7T1iCz3Lzae6mlF2cc2%2FUWZuXpWSlqknN3bzMHUfGyUL2saV0hIXS5M6I7O0RR0MvcmDucA5rIWrWCBkCxjhSYygR7O72sMiqh6Ii7yZ%2Bdo%2Fa51yWlzZXQcSD19Cpk2bFO3dLXRR1xzdSF%2F%2FxfYewiqfxOqbvAZLS5a8k%2FPLtLbRy%2FBl5nFvr8v%2FQCMqU1kSQkPABOxbiSV2Wx2GwYLMJcI3whX7zCv2bMPADaB2HwsUa4zBrVdyHN4VFJFwejVGh0l%2B%2F%2BYPAHIseTYBs1exdTUgKD%2FgxuSAil0IMTdlWPKesRSLgxstNtaWGaLbdseKIxNYFTMCVai6nI9NKKNpDjdTqvcKDIBM3U9WBKPlQ8uonsM1dInepL0sI3l%2Fy6xf6g9AjelCSAzAh6WbtdnXBTVrZ16q74ShEYvOq6%2F6OqiKbhTX7spQoc%2F%2FBQng5iYezq28YRkiu1%2FqYJw%2FkfOkj67%2B18Z%2BkOWkgiTtDxXaGv2cgdj3RS3R5Rc59%2BsDaHDMn4PEUtju8%2BE1GXLvw02q83%2BZiNV%2BW%2BUZ7s%2BokKHngM2NhloqJ%2BY8Vs7TMHTopMOolRrj%2FSdit2tTRH337iRfeEYhutgEvZ5IUmxwCJbnoQhuAswHKc6PVXAZX95Kb0YpkpPmu0nJt1DB5qeAdynM2lrCPZXnZPKussq0Ja6xgYv0kmFMQ0bJs8paGSnovSnmTQk4mDCmuKHKBjqwAeOgCd5DDEr7eVCLDsnu5%2FoIEGEVuvXpST70yL7PfZbWdp9FUuMuzO1B%2FCKCl9ffAbHCL889UsaxmbKSHtO8tPyrfzbXAn3gC4xy%2Fg5bb50QsKsKH8sjLRWCJpk%2BXFSb9D0lRP%2FTzcL4IfhyWvGYQC9JzkTTtGeT3DABOWOCbYB2LoO8mx92Rkvb2%2B%2FUkjcvfpDy6HrIxfpXJwLAnFTVQEii8VL%2FwbIDmr20heDkWGo%2B&X-Amz-Signature=78b72d9b22cf8d8264d9c05152ee32d567d668f7b26da2208f516ee13c20eda1&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 20.
![Distribution of Huber von-Mises stress in the polyamide liner [MPa]](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/694828ee7c29e05adc524c36/j_ama-2025-0071_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKMJR6GLTO%2F20251221%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251221T232347Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEB0aDGV1LWNlbnRyYWwtMSJIMEYCIQCyd7L0wNdYN1Mko1FO%2FYSkmixRp3AhYgJxhTYhVzjN8QIhAL6pxite7MLtNwsQw%2Be0pcEOyNGY%2F%2BXDNLbXRT6kizw%2FKsUFCOb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQAhoMOTYzMTM0Mjg5OTQwIgxhsyChQTna5KjofRUqmQWg%2Fok9GYUkCwHkKGjHuS9X4BEk7aOsCIK0uoG6aOOtIOdI1OgH5dKTVYL4nCxn2gwXF%2FYV7iRs%2BfdpCfNfn%2F2OtdVLK7dc7AtBF4qrKWwyeRBCp1a4DRhpXPHOeNAGeVtVA8Dz41VsoEL%2FeW%2BpuF6dXTbvSdis7W3K9%2Bj0S%2F0XvFKGG5Lm7T1iCz3Lzae6mlF2cc2%2FUWZuXpWSlqknN3bzMHUfGyUL2saV0hIXS5M6I7O0RR0MvcmDucA5rIWrWCBkCxjhSYygR7O72sMiqh6Ii7yZ%2Bdo%2Fa51yWlzZXQcSD19Cpk2bFO3dLXRR1xzdSF%2F%2FxfYewiqfxOqbvAZLS5a8k%2FPLtLbRy%2FBl5nFvr8v%2FQCMqU1kSQkPABOxbiSV2Wx2GwYLMJcI3whX7zCv2bMPADaB2HwsUa4zBrVdyHN4VFJFwejVGh0l%2B%2F%2BYPAHIseTYBs1exdTUgKD%2FgxuSAil0IMTdlWPKesRSLgxstNtaWGaLbdseKIxNYFTMCVai6nI9NKKNpDjdTqvcKDIBM3U9WBKPlQ8uonsM1dInepL0sI3l%2Fy6xf6g9AjelCSAzAh6WbtdnXBTVrZ16q74ShEYvOq6%2F6OqiKbhTX7spQoc%2F%2FBQng5iYezq28YRkiu1%2FqYJw%2FkfOkj67%2B18Z%2BkOWkgiTtDxXaGv2cgdj3RS3R5Rc59%2BsDaHDMn4PEUtju8%2BE1GXLvw02q83%2BZiNV%2BW%2BUZ7s%2BokKHngM2NhloqJ%2BY8Vs7TMHTopMOolRrj%2FSdit2tTRH337iRfeEYhutgEvZ5IUmxwCJbnoQhuAswHKc6PVXAZX95Kb0YpkpPmu0nJt1DB5qeAdynM2lrCPZXnZPKussq0Ja6xgYv0kmFMQ0bJs8paGSnovSnmTQk4mDCmuKHKBjqwAeOgCd5DDEr7eVCLDsnu5%2FoIEGEVuvXpST70yL7PfZbWdp9FUuMuzO1B%2FCKCl9ffAbHCL889UsaxmbKSHtO8tPyrfzbXAn3gC4xy%2Fg5bb50QsKsKH8sjLRWCJpk%2BXFSb9D0lRP%2FTzcL4IfhyWvGYQC9JzkTTtGeT3DABOWOCbYB2LoO8mx92Rkvb2%2B%2FUkjcvfpDy6HrIxfpXJwLAnFTVQEii8VL%2FwbIDmr20heDkWGo%2B&X-Amz-Signature=ebdd72cecccfcd18a735a29ab155df452900ec922b19b6b29ae1ac4b6748411a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 21.

Fig. 22.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Fig. 27.

Fig. 28.

Fig. 29.

Fig. 30.

Fig. 31.

Fig. 32.

Fig. 33.

Fig. 34.

Fig. 35.

Fig. 36.

Fig. 37.

Fig. 38.

Maximum values of damage index for each winding angle layer
| Angle [°] | Failure |
|---|---|
| 10 | 0,759 |
| 14,5 | 0,547 |
| 19 | 0,678 |
| 23 | 0,498 |
| 27,5 | 0,536 |
| 31,5 | 0,566 |
| 36,5 | 0,581 |
| >90 | 0,580 |
Displacement conditions for walls
| Surface X = 0 | Surface Y = 0 | Surface Z = 0 |
|---|---|---|
| u(0,y,z) = εxy 1 ε.xzz | u(x, 0, z) = εxxx + εxzz | u(x,y,0) = εxxx + εxyy |
| Surface X = Lx | Surface Y = Lx | Surface Z = Lx |
| u(Lx,y,z) = εxxLx + εxyy + εxzz | u(x, Ly, z) = εxxx + εxyLy + εxzz | u(x,y,Lz) = εxxx + εxyy + εxzLz |
PBC equations for shear in XZ-plane
| Surfaces | Edges | Vertices |
|---|---|---|
PBC equations for shear in YZ-plane
| Surfaces | Edges | Vertices |
|---|---|---|
PBC equations for shear in XY-plane
| Surfaces | Edges | Vertices |
|---|---|---|
Layup configuration
| Number of layers | Angle [°] | Quantity |
|---|---|---|
| 2 | 10 | x2 |
| 3 | 90 | |
| 1 | 14,5 | |
| 1 | 19 | |
| 3 | 90 | |
| 1 | 23 | |
| 1 | 27,5 | |
| 3 | 90 | |
| 1 | 31,5 | |
| 1 | 36,5 | |
| 3 | 90 | |
| 2 | 10 | x2 |
| 3 | 90 | |
| 1 | 14,5 | |
| 1 | 19 | |
| 3 | 90 | |
| 1 | 23 | |
| 1 | 27,5 | |
| 3 | 90 | |
| 2 | 10 | x1 |
Strain values in the most loaded elements
| Failure criteria/strain | εxx | εyy | εzz | εxy | εxz | εyz |
|---|---|---|---|---|---|---|
| Puck fibre | 7,986 · 10−3 | –1,011 · 10−2 | 2,073 · 10−3 | –9,570 · 10−5 | 2,034 · 10−4 | 6,786 · 10−4 |
| Puck matrix | 4,521 · 10–3 | 2,370 · 10−3 | –3,099 · 10−3 | –8,194 · 10−3 | –8,872 · 10−3 | 3,176 · 10−3 |
| Hashin fibre | 2,230 · 10–3 | –6,224 · 10−3 | –5,999 · 10−3 | 1,383 · 10−2 | 1,201 · 10−3 | 8,919 · 10−3 |
| Hashin matrix | 4,522 · 10−3 | 2,370 · 10−3 | –3,098 · 10−3 | –8,194 · 10−3 | –8,875 · 10−3 | 3,171 · 10−3 |
| Tsai Wu | 4,521 · 10−3 | 2,370 · 10−3 | –3,099 · 10−3 | –8,194 · 10−3 | –8,872 · 10−3 | 3,176 · 10−3 |
Mechanical strength properties of carbon epoxy composite
| Properties | Values [MPa] |
|---|---|
| Longitudinal Tensile Strength Xt | 2860 |
| Transverse Tensile Strength Yt,Zt | 81 |
| Longitudinal Compressive Strength Xc | -1450 |
| Transverse Compressive Strength Yc,Zc | -268,5 |
| Shear Strength in fiber plane S12, S13 | 136 |
| Sherar strength out of fiber plane S23 | 87 |
Mechanical properties of carbon fibre and resin epoxy
| Carbon fiber T700 (9) | Epoxy resin (9) | ||
|---|---|---|---|
| Properties | Values | Properties | Values |
| Ex[GPa] | 230 | Tensile modulus Em[GPa] | >3,2 |
| Ey, Ez[GPa] | 28 | ||
| Gxy, Gxz[GPa] | 50 | Shear modulus Gm[GPa] | 1,17 |
| Gyz[GPa] | 10 | ||
| vxy, vxz | 0,23 | Poisson’s ratio vm | 0,35 |
| vyz | 0,3 | ||
Mechanical properties of 6061 and PA6 [23, 24]
| Properties | 6061-T6 | PA6 |
|---|---|---|
| Tensile Modulus [GPa] | 68,9 | 1,4 |
| Poisson's ratio | 0,33 | 0,35 |
| Yield Strength [MPa] | 276 | 76 |
| Tensile Strength [MPa] | 310 | - |
Winding angles correspond to variable polar radius for helical layers
| Winding angleα [°] | Total number of layers | Radius of polar openings r0 [mm] |
|---|---|---|
| 10 | 10 | 30 |
| 14,5 | 4 | 42 |
| 19 | 4 | 54 |
| 23 | 4 | 66 |
| 27,5 | 4 | 78 |
| 31,5 | 2 | 90 |
| 36,5 | 2 | 102 |
Mechanical properties of carbon epoxy composite
| Properties | Material Designer (Circular fibre) | PBC equations in Mechanical | Difference between actual fibre and circular fibre [%] | ||
|---|---|---|---|---|---|
| Circular fibre | Eliptical fibre | Actual fibre | |||
| E1[GPa] | 139,345 | 139,012 | 138,972 | 142,502 | 2,51 |
| E2[GPa] | 8,242 | 8,195 | 8,291 | 8,612 | 5,09 |
| E3[GPa] | 8,242 | 8,195 | 8,288 | 8,620 | 5,19 |
| G12[GPa] | 4,657 | 4,629 | 4,900 | 5,122 | 10,65 |
| G23[GPa] | 3,943 | 3,936 | 4,454 | 4,153 | 5,51 |
| G13[GPa] | 4,657 | 4,629 | 4,899 | 5,143 | 11,10 |
| v12 | 0,271 | 0,271 | 0,272 | 0,270 | 0,37 |
| v23 | 0,501 | 0,494 | 0,468 | 0,466 | 6,99 |
| v13 | 0,271 | 0,271 | 0,272 | 0,270 | 0,37 |
PBC equations for tensile in X, Y, and Z direction
| Surfaces | Edges | Vertices |
|---|---|---|
Maximum stress results from dehomogenisation for different fibre geometries
| Failure criteria | Stress limit [MPa] | Circular fibre | Eliptical fibre | Actual fibre | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| fibre | resin | RVE | fibre | resin | RVE | fibre | resin | RVE | fibre | resin | |
| Puck fibre | 4900 | 80 | 1868 | 1832,9 | 89,9 | 1795,4 | 1760 | 90,5 | 1923 | 1820 | 133,4 |
| Puck matrix | 1104,8 | 1128,1 | 57 | 1027,4 | 1067 | 55,1 | 1095,6 | 1133,6 | 76,3 | ||
| Hashin fibre | 676,1 | 553,2 | 154,4 | 680,9 | 563,35 | 177,2 | 1110,7 | 580,2 | 238,3 | ||
| Hashin matrix | 1104,9 | 1128,2 | 57 | 1107,9 | 1120,3 | 53,9 | 1188,9 | 1204,5 | 138,7 | ||
| Tsai wu | 1104,8 | 1128,1 | 57 | 1107,8 | 1120,2 | 54 | 1188,8 | 1204,4 | 138,7 | ||