Have a personal or library account? Click to login
Design of Automated Defectoscopy Systems Cover
Open Access
|Dec 2025

References

  1. Polunin AI, Smyshlyaeva LG, Bondarenko TV. Accounting of dynamics of standing waves in a rotating ring with supports. International Journal of Applied Engineering Research. 2015;12:29015-29031.
  2. Busch K, Kunzmann H, Waldale F. Calibration of coordinate measuring machines. Precision Engineering. 1985;7(3):139-144.
  3. Weckenmann A, Kenngrossen F. Für die Angabe der Genauigkeit von Koordinatenmessgeräten. Technisches Messen. 1983;50(5):179-184.
  4. Elshennewy AH, Ham I, Cohen PH. Evaluating the performance of coordinate measuring machines. Quality Progress. 1988;59-65.
  5. Golubkova MN, Mayorov SA, Ochin EF. Coherent optical processor for detecting surface defects of rotary bodies (in Russian). In: Optical and Radio Wave Methods and Means of Non-Destructive Quality Control of Materials and Products. Part 1. Fergana: FerPI Publ.1981; 262-264.
  6. Ochin EF. Principles of constructing training automata for detecting surface defects of bodies of rotation (in Russian). Defectoscopy. 1985;7.
  7. Ochin EF, Chukreev DP. Analysis of algorithms for classification of surface defects of bodies of rotation based on signals of scanning transducers (in Russian). Defectoscopy. 1989;(1).
  8. Tao X, Zhang D, Ma W, Liu X, Xu D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Applied Sciences. 2018;8(9):1575. https://doi.org/10.3390/app8091575
  9. Okeke S, Maduh UJ, Sain M. A machine learning method for detection of surface defects on ceramic tiles using convolutional neural networks. Electronics. 2022;11(1):55. https://doi.org/10.3390/electronics11010055
  10. Lin Z, Lai Y, Pan T, Zhang W, Zheng J, Ge X, Liu Y. A new method for automatic detection of defects in selective laser melting based on machine vision. Materials. 2021;14(15):4175. https://doi.org/10.3390/ma14154175
  11. Zhou Q, Chen R, Huang B, Liu C, Yu J, Yu X. An automatic surface defect inspection system for automobiles using machine vision methods. Sensors. 2019;19(3):644. https://doi.org/10.3390/s19030644
  12. Perec A, Pude F, Stirnimann J, Wegener K. Feasibility study on the use of fractal analysis for evaluating the surface quality generated by waterjet. Tehnicki Vjesnik-Technical Gazette. 2015;22:879-883. https://doi.org/10.17559/TV-20140128231244
  13. Navidi W. Statistics for engineers and scientists. 3rd ed. New York: McGraw-Hill; 2010.
  14. Koronacki J, Mielniczuk J. Statystyka dla studentów kierunków technicznych i przyrodniczych. Wydawnictwo WNT; 2018.
  15. Cheng J, Guo B, Liu J, et al. TL-SDD: A transfer learning-based method for surface defect detection with few samples. In: Proceedings of the 2021 7th International Conference on Big Data Computing and Communications (BigCom). Deqing, China. 2021;136-43. https://doi.org/10.1109/BigCom53800.2021.00023
  16. Khanam R, Hussain M, Hill R, Allen P. A comprehensive review of convolutional neural networks for defect detection in industrial applications. IEEE Access. 2024;12:94250-94295. https://doi.org/10.1109/ACCESS.2024.3425166.
  17. Bhatt P, Malhan R, Rajendran P, Shah B, Thakar S, Yoon YJ, Gupta S. Image-based surface defect detection using deep learning: a review. J Comput Inf Sci Eng. 2021;21:1-23. https://doi.org/10.1115/1.4049535
  18. Semitela Â, Pereira M, Completo A, Lau N, Santos JP. Improving industrial quality control: a transfer learning approach to surface defect detection. Sensors (Basel). 2025;25(2):527. doi:10.3390/s25020527.
  19. Milne A, Xie X. Steel surface roughness parameter prediction from laser reflection data using machine learning models. Int J Adv Manuf Technol. 2024;132:4645-62. https://doi.org/10.1007/s00170-024-13543-6
  20. Mariniuc AM, Cojocaru D, Abagiu MM. Building surface defect detection using machine learning and 3D scanning techniques in the construction domain. Buildings. 2024;14(3):669. https://doi.org/10.3390/buildings14030669
  21. Brand AS. Phase uncertainty in digital holographic microscopy measurements in the presence of solution flow conditions. J Res Natl Inst Stand Technol. 2017 Mar 27;122:1-41. https://doi.org/10.6028/jres.122.022
  22. Božič J, Tabernik D, Skočaj D. Mixed supervision for surface-defect detection: from weakly to fully supervised learning. Comput Ind. 2021;129:103459. https://doi.org/10.1016/j.compind.2021.103459
  23. Saiwa. Everything about surface defect detection [Internet]. https://saiwa.ai/app/detection/anomaly-detection/
  24. International Organization for Standardization. ISO 25178-6:2010. Geometrical product specifications (GPS) – Surface texture: Areal. Part 6: Classification of methods for measuring surface texture. 1st ed. Geneva: ISO; 2010. https://www.iso.org/standard/42896.html
  25. Lemieszewski Ł, Szymczyk J, Ochin E. Architecture of automatic defectoscopy machines on highly reflective rotary surfaces, part II. In: Proceedings of the XXVI International Symposium. Research-Education-Technology. Stralsund, Germany. 2024;26-27:98-103.
DOI: https://doi.org/10.2478/ama-2025-0069 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 611 - 616
Submitted on: Mar 5, 2025
|
Accepted on: Nov 3, 2025
|
Published on: Dec 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Łukasz LEMIESZEWSKI, Janusz SZYMCZYK, Evgeny OCHIN, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.