Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Comparison for f″(–1), θ′(–1) and φθ′(–1) when α = 1, φ = 0_06, Kr = 0_1, Ec = 0, M = 1, Sc = 1 and Pr = 6_2
| Re | ||||||
|---|---|---|---|---|---|---|
| –1 | 2.00603 | 2.00603 | –0.0041705 | –0.0041705 | –0.263183 | –0.263182 |
| 0 | 1.83493 | 1.83492 | –0.072609 | –0.072607 | –0.405111 | –0.405111 |
| +1 | 1.53430 | 1.53430 | –0.730132 | –0.730132 | –0.610916 | –0.610916 |
Explanation of the parameter control constraints
| Symbol | Name | Formula |
|---|---|---|
| α | Time-dependent dimensionless parameter | |
| Re | Reynolds number | |
| Sc | Schmidt numbers | |
| Ec | Eckert number | |
| M | Hartmann number | |
| Pr | Prandtl number | |
| Br | Brinkman number | Pr ∗ Ec |
j_ama-2025-0061_utab_001
| Symbol | Description | Units (if applicable) |
| A | Permeability constant | --- |
| Br | Brinkman number | --- |
| C | Concentration | mol/m3 |
| Cp | Specific heat capacity | J/kg·K |
| D | Mass diffusivity | m2/s |
| Ec | Eckert number | --- |
| f | Dimensionless velocity function | --- |
| M | Hartmann number | --- |
| Pr | Prandtl number | --- |
| Re | Reynolds number | --- |
| Sc | Schmidt number | --- |
| T | Temperature | K |
| u,v | Velocity components | m/s |
| α | Unsteadiness parameter | --- |
| η | Similarity variable | --- |
| θ | Dimensionless temperature | --- |
| μ | Dynamic viscosity | Pa·s |
| ρ | Density | kg/m3 |
| σ | Electrical conductivity | S/m |
| φ | Dimensionless concentration | --- |
Explanation of the quantities control constraints
| Symbol | Formula |
|---|---|
| A1 | |
| A2 | |
| A3 | |
| A4 | |
| A5 |
Effects of φ on the f′(0) and θ(0) when Re = α = –1, Kr = M = Sc = 1 and Pr = 21
| φTiO2 | φSiO2 | φAl2O3 | f″(–1) | θ′(–1) | |
|---|---|---|---|---|---|
| N-F | 0% | 0% | 0% | 1.4067241 | 0.5258221 |
| 2% | 0% | 0% | 1.3993983 | 0.52438206 | |
| 0% | 2% | 0% | 1.4016671 | 0.5247220 | |
| 0% | 0% | 2% | 1.3987235 | 0.52430242 | |
| φTiO2 | φSiO2 | φAl2O3 | f″(–1) | θ′(–1) | |
| HN-F | 0% | 0% | 0% | 1.4067241 | 0.5258221 |
| 2% | 2% | 0% | 1.3941953 | 0.52334135 | |
| 0% | 2% | 2% | 1.39345981 | 0.5232619 | |
| 2% | 0% | 2% | 1.39123039 | 0.522949 | |
| φTiO2 | φSiO2 | φAl2O3 | f″(–1) | θ′(–1) | |
| THN-F | 0% | 0% | 0% | 1.4067241 | 0.5258221 |
| 1% | 1% | 1% | 1.3965176 | 0.52382605 | |
| 2% | 2% | 2% | 1.3858312 | 0.52196548 | |
| 0% | 0% | 2% | 1.3746924 | 0.52023433 |
The solution procedure based on the ERKM
| Equations | Conditions |
|---|---|
| 𝒴1(–1) = –1 | |
| 𝒴2(–1) = 0 | |
| 𝒴3(–1) = α1 | |
| 𝒴4(–1) = α2 | |
| 𝒴5(–1) = 1 | |
| 𝒴6(–1) = α3 | |
| 𝒴7(–1) = 1 | |
| 𝒴8(–1) = α4 |
Thermophysical characteristics of a ternary hybrid nanofluid
| Physical properties | ρ (kg/m3) | Cp(J/kg. °K) | k(W/m.°K) | σ(S/m) |
|---|---|---|---|---|
| Blood | 1063.8 | 3594 | 0.492 | 0.8 |
| TiO2 → φ1 | 4250 | 397.2 | 8.9538 | 2.4×10+6 |
| SiO2 → φ2 | 2200 | 765 | 1.4013 | 3.5×10+6 |
| Al2O3 → φ3 | 3970 | 686 | 40 | 36.9×10+6 |
A characteristic made between the physical features of ternary hybrid nanofluids_
| Dynamic viscosity | |
| Density | |
| Specific heat | |
| Electrical Conductivity | |
| Thermal Conductivity |