Have a personal or library account? Click to login
Analytical Solution of a Dissipative Flow Conveying Ternary Hybrid Nanofluids Induced By a Porous Surface with Lorentz Forces Cover

Analytical Solution of a Dissipative Flow Conveying Ternary Hybrid Nanofluids Induced By a Porous Surface with Lorentz Forces

Open Access
|Dec 2025

Figures & Tables

Fig. 1.

Physical model
Physical model

Fig. 2.

ADM procedure
ADM procedure

Fig. 3.

Influence of α on f′, θ and φ when: φ1 = φ2 = φ3 = 0.01, Re = –1, M = 1, Sc = 1, Kr = 0.1 and Pr = 21
Influence of α on f′, θ and φ when: φ1 = φ2 = φ3 = 0.01, Re = –1, M = 1, Sc = 1, Kr = 0.1 and Pr = 21

Fig. 4.

Influence of M on f′ and θ when: φ1 = φ2 = φ3 = 0.01, Re = –1, α = –1, Sc = 1, Kr = 0.1 and Pr = 21
Influence of M on f′ and θ when: φ1 = φ2 = φ3 = 0.01, Re = –1, α = –1, Sc = 1, Kr = 0.1 and Pr = 21

Fig. 5.

Influence of fie on f′ when: φ1 = φ2 = φ3 = 0.01, α = –1, Sc = 1, Kr = 0.1 and Pr = 21
Influence of fie on f′ when: φ1 = φ2 = φ3 = 0.01, α = –1, Sc = 1, Kr = 0.1 and Pr = 21

Fig. 6.

Influence of fie on θ(η) and φ(η) when: φ1 = φ2 = φ3 = 0.01, φ = –1, Sc = 1, Kr = 0.1 and Pr = 21
Influence of fie on θ(η) and φ(η) when: φ1 = φ2 = φ3 = 0.01, φ = –1, Sc = 1, Kr = 0.1 and Pr = 21

Fig. 7.

Influence of Ec on θ when: φ1 = φ2 = φ3 = 3 = 0.01, Re = –1, α = –1, Sc = 1 and Kr = 0.1
Influence of Ec on θ when: φ1 = φ2 = φ3 = 3 = 0.01, Re = –1, α = –1, Sc = 1 and Kr = 0.1

Fig. 8.

Influence of Sc on θ when: φ1 = φ2 = φ3 = 0.01, Re = –1, α = – 1, M = 1, Kr = 0.1 and Pr = 21
Influence of Sc on θ when: φ1 = φ2 = φ3 = 0.01, Re = –1, α = – 1, M = 1, Kr = 0.1 and Pr = 21

Fig. 9.

Influence of both Re and M on f″ when: φ1 = φ2 = φ3 = 0.01, Re = –1, α = –1, Kr = 0.1 and Pr = 21
Influence of both Re and M on f″ when: φ1 = φ2 = φ3 = 0.01, Re = –1, α = –1, Kr = 0.1 and Pr = 21

Fig. 10.

Influence of both Re and M on θ′(–1) when: φ1 = φ2 = φ3 = 0.01, α = –1, Kr = 0.1 and Pr =21
Influence of both Re and M on θ′(–1) when: φ1 = φ2 = φ3 = 0.01, α = –1, Kr = 0.1 and Pr =21

Fig. 11.

Influence of both Re and Ec on –θ′(–1) when: φ1 = φ2 = φ3 = 0.01, α = –1, Kr = 0.1 M = 1 and Pr = 21
Influence of both Re and Ec on –θ′(–1) when: φ1 = φ2 = φ3 = 0.01, α = –1, Kr = 0.1 M = 1 and Pr = 21

Fig. 12.

Influence of both Re and Ec on φ′(–1) when: φ1 = φ2 = φ3 = 0.01, α = –1, Kr = 0.1 M = 1 and Pr = 21
Influence of both Re and Ec on φ′(–1) when: φ1 = φ2 = φ3 = 0.01, α = –1, Kr = 0.1 M = 1 and Pr = 21

Fig. 13.

Influence of both φ1 and φ2 on φ′(–1) when: Re = –1, Ec = 0.01, φ3 = 0.01, α = –1, Kr = 0.1 M = 1 and Pr = 21
Influence of both φ1 and φ2 on φ′(–1) when: Re = –1, Ec = 0.01, φ3 = 0.01, α = –1, Kr = 0.1 M = 1 and Pr = 21

Fig. 14.

Comparison of f′, θ and φ with HAM-package when : Re = α = –1, Kr = M = Sc = 1 and Pr = 21
Comparison of f′, θ and φ with HAM-package when : Re = α = –1, Kr = M = Sc = 1 and Pr = 21

Comparison for f″(–1), θ′(–1) and φθ′(–1) when α = 1, φ = 0_06, Kr = 0_1, Ec = 0, M = 1, Sc = 1 and Pr = 6_2

Ref″(–1)[51]f″(–1)ADMθ′(–1)[51]θ′(–1)ADMφ′(–1)[51]φ′(–1)ADM
–12.006032.00603–0.0041705–0.0041705–0.263183–0.263182
01.834931.83492–0.072609–0.072607–0.405111–0.405111
+11.534301.53430–0.730132–0.730132–0.610916–0.610916

Explanation of the parameter control constraints

SymbolNameFormula
αTime-dependent dimensionless parametera(t)a(t)vf{{a(t){a^\prime }(t)} \over {{v_f}}}
ReReynolds numberAαavf{{A\alpha a'} \over {{v_f}}}
ScSchmidt numbersvfDB{{{v_f}} \over {{D_B}}}
EcEckert numberv2ΔT(CP)bf{{{v^2}} \over {\Delta T{{\left( {{C_P}} \right)}_{bf}}}}
MHartmann numberσfa2B02μf\sqrt {{{{\sigma _f}{a^2}B_0^2} \over {{\mu _f}}}}
PrPrandtl numberρf.CPf.fmaxkf{{{\rho _f}.{C_{Pf}}.{f_{max}}} \over {{k_f}}}
BrBrinkman numberPrEc

j_ama-2025-0061_utab_001

SymbolDescriptionUnits (if applicable)
APermeability constant---
BrBrinkman number---
CConcentrationmol/m3
CpSpecific heat capacityJ/kg·K
DMass diffusivitym2/s
EcEckert number---
fDimensionless velocity function---
MHartmann number---
PrPrandtl number---
ReReynolds number---
ScSchmidt number---
TTemperatureK
u,vVelocity componentsm/s
αUnsteadiness parameter---
ηSimilarity variable---
θDimensionless temperature---
μDynamic viscosityPa·s
ρDensitykg/m3
σElectrical conductivityS/m
φDimensionless concentration---

Explanation of the quantities control constraints

SymbolFormula
A1(1φTiO2)2.5(1φSiO2)2.5(1φAl2O3)2.5{\left( {1 - {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}} \right)^{ - 2.5}}{\left( {1 - {\varphi _{Si{O_2}}}} \right)^{ - 2.5}}{\left( {1 - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right)^{ - 2.5}}
A2(1φTiO2)((1φSiO2)((1φAl2O3)+φAl2O3ρAl2O3ρf)+φMoS2.ρMoS2ρf)+φTiO2·ρTiO2ρf\left( {1 - {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}} \right)\left( {\left( {1 - {\varphi _{Si{O_2}}}} \right)\left( {\left( {1 - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right) + {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}{{{\rho _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \over {{\rho _f}}}} \right) + {\varphi _{Mo{S_2}}}.{{{\rho _{Mo{S_2}}}} \over {{\rho _f}}}} \right) + {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}\cdot{{{\rho _{{\rm{Ti}}{{\rm{O}}_2}}}} \over {{\rho _f}}}
A3σthnfσf{{{\sigma _{thnf}}} \over {{\sigma _f}}}
A4kthnfkf{{{k_{thnf}}} \over {{k_f}}}
A5(1φTiO2){ (1φSiO2)[ (1φAl2O3)+φAl2O3(ρCp)Al2O3(ρCp)f ]+φSiO2.(ρCp)SiO2(ρCp)f }+φTiO2.(ρCp)TiO2(ρCp)f\left( {1 - {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}} \right)\left\{ {\left( {1 - {\varphi _{Si{O_2}}}} \right)\left[ {\left( {1 - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right) + {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}{{{{\left( {\rho {C_p}} \right)}_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \over {{{\left( {\rho {C_p}} \right)}_f}}}} \right] + {\varphi _{Si{O_2}}}.{{{{\left( {\rho {C_p}} \right)}_{Si{O_2}}}} \over {{{\left( {\rho {C_p}} \right)}_f}}}} \right\} + {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}.{{{{\left( {\rho {C_p}} \right)}_{{\rm{Ti}}{{\rm{O}}_2}}}} \over {{{\left( {\rho {C_p}} \right)}_f}}}

Effects of φ on the f′(0) and θ(0) when Re = α = –1, Kr = M = Sc = 1 and Pr = 21

φTiO2φSiO2φAl2O3f″(–1)θ′(–1)
N-F0%0%0%1.40672410.5258221
2%0%0%1.39939830.52438206
0%2%0%1.40166710.5247220
0%0%2%1.39872350.52430242
φTiO2φSiO2φAl2O3f″(–1)θ′(–1)
HN-F0%0%0%1.40672410.5258221
2%2%0%1.39419530.52334135
0%2%2%1.393459810.5232619
2%0%2%1.391230390.522949
φTiO2φSiO2φAl2O3f″(–1)θ′(–1)
THN-F0%0%0%1.40672410.5258221
1%1%1%1.39651760.52382605
2%2%2%1.38583120.52196548
0%0%2%1.37469240.52023433

The solution procedure based on the ERKM

EquationsConditions
𝒴1=𝒴2y_1^\prime = {y_2}𝒴1(–1) = –1
𝒴2=𝒴3y_2^\prime = {y_3}𝒴2(–1) = 0
𝒴3=𝒴4y_3^\prime = {y_4}𝒴3(–1) = α1
𝒴4=A2A1 +α(3𝒴3+η𝒴3)+Re(𝒴2𝒴3𝒴1𝒴3)+A21A3M𝒴3 {\cal Y}_4^\prime = {{{A_2}} \over {{A_1}}}\left\langle { + \alpha \left( {3{{\cal Y}_3} + \eta {\cal Y}_3^\prime } \right) + {\mathop{\rm Re}\nolimits} \left( {{{\cal Y}_2}{{\cal Y}_3} - {{\cal Y}_1}{\cal Y}_3^\prime } \right) + A_2^{ - 1}{A_3}M{{\cal Y}_3}} \right\rangle 𝒴4(–1) = α2
𝒴5=𝒴6{\cal Y}_5^\prime = {{\cal Y}_6}𝒴5(–1) = 1
𝒴6=1A4 +A5Pr𝒴6(ηα𝒴1Re)+A1BrRe2𝒴32 {\cal Y}_6^\prime = {1 \over {{A_4}}}\left\langle { + {A_5}\Pr {{\cal Y}_6}\left( {{\eta _\alpha } - {{\cal Y}_1}{\mathop{\rm Re}\nolimits} } \right) + {A_1}Br{{{\mathop{\rm Re}\nolimits} }^2}{\cal Y}_3^2} \right\rangle 𝒴6(–1) = α3
𝒴7=𝒴8y_7^\prime = {y_8}𝒴7(–1) = 1
𝒴7= +Sc𝒴8(ηα𝒴1Re)Kr𝒴7 {\cal Y}_7^\prime = \left\langle { + Sc{{\cal Y}_8}\left( {\eta \alpha - {{\cal Y}_1}Re} \right) - {K_r}{{\cal Y}_7}} \right\rangle 𝒴8(–1) = α4

Thermophysical characteristics of a ternary hybrid nanofluid

Physical propertiesρ (kg/m3)Cp(J/kg. °K)k(W/mK)σ(S/m)
Blood1063.835940.4920.8
TiO2φ14250397.28.95382.4×10+6
SiO2φ222007651.40133.5×10+6
Al2O3φ339706864036.9×10+6

A characteristic made between the physical features of ternary hybrid nanofluids_

Dynamic viscosityμthnf=μf(1φTio2)2.5(1φSiO2)2.5(1φAl2O3)2.5{\mu _{thnf}} = {{{\mu _f}} \over {{{\left( {1 - {\varphi _{{\rm{Ti}}{{\rm{o}}_2}}}} \right)}^{2.5}}{{\left( {1 - {\varphi _{Si{O_2}}}} \right)}^{2.5}}{{\left( {1 - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right)}^{2.5}}}}
Densityρthnf=(1φTiO2)( (1φSiO2)((1φAl2O3)ρf+φAl2O3ρAl2O3)+ φSiO2.ρSiO2 )+φTiO2.ρTiO2{\rho _{thnf}} = \left( {1 - {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}} \right)\left( {\left( {1 - {\varphi _{Si{O_2}}}} \right)\left( {\left( {1 - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right){\rho _f} + {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}{\rho _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right) + } \right.\left. {{\varphi _{Si{O_2}}}.{\rho _{Si{O_2}}}} \right) + {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}.{\rho _{{\rm{Ti}}{{\rm{O}}_2}}}
Specific heat(ρCp)thnf=(1φTiO2)( (1φSiO2)( (1φAl2O3)(ρCp)f+ φAl2O3(ρCp)Al2O3 )+φSiO2·(ρCp)SiO2 )+φTiO2.(ρCp)TiO2{\left( {\rho {C_p}} \right)_{thnf}} = \left( {1 - {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}} \right)\left( {(1 - {\varphi _{Si{O_2}}})\left( {\left( {1 - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right){{\left( {\rho {C_p}} \right)}_f} + } \right.} \right.\left. {\left. {{\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}{{\left( {\rho {C_p}} \right)}_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right) + {\varphi _{Si{O_2}}}\cdot{{\left( {\rho {C_p}} \right)}_{Si{O_2}}}} \right) + {\varphi _{{\rm{Ti}}{{\rm{O}}_2}}}.{\left( {\rho {C_p}} \right)_{{\rm{Ti}}{{\rm{O}}_2}}}
Electrical Conductivity{ σthnfσhnf=1+3(σTiO2σhnf1)φTiO2(σTiO2σhnf+2)φTiO2(σTiO2σhnf1)σhnfσnf=1+3(σSiO2σnf1)φSiO2(σSiO2σnf+2)φSiO2(σSiO2σnf1)σnfσf=1+3(σAl2O3σf1)φAl2O3(σAl2O3σf+2)φAl2O3(σAl2O3σf1) \left\{ {\matrix{ {{{{\sigma _{thnf}}} \over {{\sigma _{hnf}}}} = 1 + {{3\left( {{{{\sigma _{Ti{O_2}}}} \over {{\sigma _{hnf}}}} - 1} \right){\varphi _{Ti{O_2}}}} \over {\left( {{{{\sigma _{Ti{O_2}}}} \over {{\sigma _{hnf}}}} + 2} \right) - {\varphi _{Ti{O_2}}}\left( {{{{\sigma _{Ti{O_2}}}} \over {{\sigma _{hnf}}}} - 1} \right)}}} \hfill \cr {{{{\sigma _{hnf}}} \over {{\sigma _{nf}}}} = 1 + {{3\left( {{{{\sigma _{Si{O_2}}}} \over {{\sigma _{nf}}}} - 1} \right){\varphi _{Si{O_2}}}} \over {\left( {{{{\sigma _{Si{O_2}}}} \over {{\sigma _{nf}}}} + 2} \right) - {\varphi _{Si{O_2}}}\left( {{{{\sigma _{Si{O_2}}}} \over {{\sigma _{nf}}}} - 1} \right)}}} \hfill \cr {{{{\sigma _{nf}}} \over {{\sigma _f}}} = 1 + {{3\left( {{{{\sigma _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \over {{\sigma _f}}} - 1} \right){\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \over {\left( {{{{\sigma _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \over {{\sigma _f}}} + 2} \right) - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}\left( {{{{\sigma _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \over {{\sigma _f}}} - 1} \right)}}} \hfill \cr } } \right.
Thermal Conductivity{ kthnfkhnf=kTiO2+2khnf2φTiO2(khnfkTiO2)kTiO2+2khnfφTiO2(khnfkTiO2)khnfknf=kSiO2+2knf2φSiO2(knfkSiO2)kSiO2+2knfφSiO2(knfkSiO2)knfkf=kAl2O3+2kf2φAl2O3(kfkAl2O3)kAl2O3+2kfφAl2O3(kfkAl2O3) \left\{ {\matrix{ {{{{k_{thnf}}} \over {{k_{hnf}}}} = {{{k_{Ti{O_2}}} + 2{k_{hnf}} - 2{\varphi _{Ti{O_2}}}\left( {{k_{hnf}} - {k_{Ti{O_2}}}} \right)} \over {{k_{Ti{O_2}}} + 2{k_{hnf}} - {\varphi _{Ti{O_2}}}\left( {{k_{hnf}} - {k_{Ti{O_2}}}} \right)}}} \cr {{{{k_{hnf}}} \over {{k_{nf}}}} = {{{k_{Si{O_2}}} + 2{k_{nf}} - 2{\varphi _{Si{O_2}}}\left( {{k_{nf}} - {k_{Si{O_2}}}} \right)} \over {{k_{Si{O_2}}} + 2{k_{nf}} - {\varphi _{Si{O_2}}}\left( {{k_{nf}} - {k_{Si{O_2}}}} \right)}}} \cr {{{{k_{nf}}} \over {{k_f}}} = {{{k_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}} + 2{k_f} - 2{\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}\left( {{k_f} - {k_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right)} \over {{k_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}} + 2{k_f} - {\varphi _{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}\left( {{k_f} - {k_{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}}}} \right)}}} \cr } } \right.
DOI: https://doi.org/10.2478/ama-2025-0061 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 525 - 538
Submitted on: Feb 15, 2025
Accepted on: Jun 10, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ibrahim MAHARIQ, Mohamed KEZZAR, Pachiyappan RAGUPATHI, Umair KHAN, Farhan Lafta RASHID, Abeer SHAABAN, Mohamed Rafik SARI, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.