Have a personal or library account? Click to login
Control of Free Convection by Flexible Fins in a Square Cavity Containing a Heated Triangular Block Cover

Control of Free Convection by Flexible Fins in a Square Cavity Containing a Heated Triangular Block

Open Access
|Sep 2025

Figures & Tables

Fig. 1.

Physical 2D model of our study
Physical 2D model of our study

Fig. 2.

Comparison of the results of the contours of isotherms when Pr = 10 and Et = 1010 between the present study and the study of Mohammad Shahabady et al.
Comparison of the results of the contours of isotherms when Pr = 10 and Et = 1010 between the present study and the study of Mohammad Shahabady et al.

Fig. 3.

Comparison of the results of the streamlines when Pr = 10 and Et = 1010 between the present work and the work of Mohammad Shahabady et al.
Comparison of the results of the streamlines when Pr = 10 and Et = 1010 between the present work and the work of Mohammad Shahabady et al.

Fig. 4.

Streamlines of the velocity when Et=5×109 and Et=1011 for different Rayleigh numbers
Streamlines of the velocity when Et=5×109 and Et=1011 for different Rayleigh numbers

Fig. 5.

Isotherms for Et=5×109 and Et=1011 for different Rayleigh numbers
Isotherms for Et=5×109 and Et=1011 for different Rayleigh numbers

Fig. 6.

Cutlines for different regions of the cavity
Cutlines for different regions of the cavity

Fig. 7.

Temperature profiles in the region L1 for multiples Rayleigh numbers and Et=5×109, Et=1011
Temperature profiles in the region L1 for multiples Rayleigh numbers and Et=5×109, Et=1011

Fig. 8.

Temperature profiles in L2 cutline for variating Rayleigh numbers and Et=5×109, Et=1011
Temperature profiles in L2 cutline for variating Rayleigh numbers and Et=5×109, Et=1011

Fig. 9.

Temperature profiles in L3 cutline for different Rayleigh numbers and Et=5×109, Et=1011
Temperature profiles in L3 cutline for different Rayleigh numbers and Et=5×109, Et=1011

Fig. 10.

Temperature profiles in L4 cutline where Et=5×109, 1011 for different Ra
Temperature profiles in L4 cutline where Et=5×109, 1011 for different Ra

Fig. 11.

Velocity profiles in cutline L1 for different Rayleigh numbers and Et=5×109, Et=1011
Velocity profiles in cutline L1 for different Rayleigh numbers and Et=5×109, Et=1011

Fig. 12.

Velocity profiles in cutline L2 for different Rayleigh numbers and Et=5×109, Et=1011
Velocity profiles in cutline L2 for different Rayleigh numbers and Et=5×109, Et=1011

Fig. 13.

Velocity profiles in cutline L3 for different Rayleigh numbers and Et=5×109, Et=1011
Velocity profiles in cutline L3 for different Rayleigh numbers and Et=5×109, Et=1011

Fig. 14.

Velocity profiles in cutline L4 for different Rayleigh numbers and Et=5×109, Et=1011
Velocity profiles in cutline L4 for different Rayleigh numbers and Et=5×109, Et=1011

Fig. 15.

Variation of the average Nusselt number as a function of Ra for different Et values
Variation of the average Nusselt number as a function of Ra for different Et values

The average Nusselt number for variety of elements number

Number of elements11128139121725468554981
Average Nusselt number4,39884,80614,89054,98294,9829
DOI: https://doi.org/10.2478/ama-2025-0057 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 496 - 504
Submitted on: Jan 6, 2025
Accepted on: Sep 18, 2025
Published on: Sep 30, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Said AZZI, Belkacem BELKACEM, Mohamed BOUZIT, Mohamed BOUHAFS, Atika BENCHERIF, Imadeddine DEHIMI, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.