Have a personal or library account? Click to login
Analysis of Convective Instability in Dusty Ferromagnetic Fluids with Magnetic Field-Dependent Viscosity Under Fluid-Permeable Magnetic Boundaries Cover

Analysis of Convective Instability in Dusty Ferromagnetic Fluids with Magnetic Field-Dependent Viscosity Under Fluid-Permeable Magnetic Boundaries

Open Access
|Jun 2025

References

  1. Scherer C, Figueiredo Neto AM. Ferrofluids: properties and applications. Braz J Phys. 2005;35(3A):718–727. https://doi.org/10.1590/S0103-97332005000400018
  2. Kole M, Khandekar S. Engineering applications of ferrofluids: A review. J Magn Magn Mater. 2021;537:168222. https://doi.org/10.1016/j.jmmm.2021.168222
  3. Genc S, Derin B. Synthesis and rheology of ferrofluids: a review. Curr Opin Chem Eng. 2014;3:118–124. https://doi.org/10.1016/j.coche.2013.12.006
  4. Alsaady M, Fu R, Li B, Boukhanouf R, Yan Y. Thermo-physical properties and thermo-magnetic convection of ferrofluid. Appl Therm Eng. 2015;88:14–21. https://doi.org/10.1016/j.applthermaleng.2014.09.087
  5. Ivanov AO, Kantorovich SS, Reznikov EN, Holm C, Pshenichnikov AF, Lebedev AV, et al. Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Phys Rev E. 2007;75(6):061405. https://doi.org/10.1103/PhysRevE.75.061405
  6. Finlayson BA. Convective instability of ferromagnetic fluids. J Fluid Mech. 1970;40(4):753–767. https://doi.org/10.1017/S0022112070000423
  7. Schwab L, Hildebrandt U, Stierstadt K. Magnetic Bénard convection. J Magn Magn Mater. 1983;39(1–2):113–114. https://doi.org/10.1016/0304-8853(83)90412-2
  8. Sunil, Sharma A, Sharma D, Kumar P. Effect of magnetic field–dependent viscosity on thermal convection in a ferromagnetic fluid. Chem Eng Commun. 2008;195(5):571–583. https://doi.org/10.1080/00986440701707719
  9. Dhiman J, Sharma N. Thermal instability of hot ferrofluid layer with temperature-dependent viscosity. Int J Fluid Mech Res. 2018;45(5):389–398. https://doi.org/10.1615/InterJFluidMechRes.2018016842
  10. Dhiman JS, Sharma N. Effect of temperature dependent viscosity on thermal convection in ferrofluid layer. J Theor Appl Mech. 2021; 51:3–21.
  11. Vaidyanathan G, Sekar R, Balasubramanian R. Ferroconvective instability of fluids saturating a porous medium. Int J Eng Sci. 1991;29(10):1259–1267. https://doi.org/10.1016/0020-7225(91)90029-3
  12. Venkatasubramanian S, Kaloni PN. Effects of rotation on the thermo-convective instability of a horizontal layer of ferrofluids. Int J Eng Sci. 1994;32(2):237–256. https://doi.org/10.1016/0020-7225(94)90004-3
  13. Chand P, Bharti PK, Mahajan A, et al. Thermal convection in micropolar ferrofluid in the presence of rotation. J Magn Magn Mater. 2008;320(3–4):316–324. https://doi.org/10.1016/j.jmmm.2007.06.006
  14. Prakash J, Manan S, Kumar P. Ferromagnetic convection in a sparsely distributed porous medium with magnetic field dependent viscosity revisited. J Porous Media. 2018;21(8). https://doi.org/10.1615/JPorMedia.2018018832
  15. Prakash J, Kumar P, Manan S, Sharma K. The effect of magnetic field dependent viscosity on ferromagnetic convection in a rotating sparsely distributed porous medium-revisited. Int J Appl Mech Eng. 2020;25(1):142–158. https://doi.org/10.2478/ijame-2020-0010
  16. Kumar P, Kaur M, Thakur A, Bala R. On estimating the growth rate of perturbations in Rivlin-Ericksen ferromagnetic convection with magnetic field dependent viscosity. Tech Mech. 2024;44(1):1–13. https://doi.org/10.24352/UB.OVGU-2024-0512024
  17. Kaur M, Kumar P, Manan S, Kumar A. Combined effect of magnetic field dependent viscosity and fluid-permeable, magnetic boundaries on convective instabilities in a hot ferrofluid layer. J Taibah Univ Sci. 2025;19(1):2464462. https://doi.org/10.1080/16583655.2025.2464462
  18. Sunil, Sharma A, Sharma D, Sharma R. Effect of dust particles on thermal convection in a ferromagnetic fluid. Z Naturforsch A. 2005;60(7):494–502. https://doi.org/10.1515/zna-2005-0705
  19. Sunil, Sharma A, Shandil R. Effect of magnetic field dependent viscosity on ferroconvection in the presence of dust particles. J Appl Math Comput. 2008;27:7–22. https://doi.org/10.1007/s12190-008-0055-2
  20. Sunil, Divya, Sharma R. The effect of magnetic-field-dependent viscosity on ferroconvection in a porous medium in the presence of dust particles. J Geophys Eng. 2004;1(4):277–286. https://doi.org/10.1088/1742-2132/1/4/006
  21. Sharma A, Kumar P et al. Effect of magnetic field dependent viscosity and rotation on ferroconvection in the presence of dust particles. Appl Math Comput. 2006;182(1):82–88. https://doi.org/10.1016/j.amc.2006.03.037
  22. Kumar P, Kumar A, Thakur A. Effect of viscosity variation with temperature on convective instability in a hot dusty ferrofluid layer with permeable boundaries. Numer Heat Transf B. 2024;1–18. https://doi.org/10.1080/10407790.2024.2380755
  23. Mittal R, Rana U. Effect of dust particles on a layer of micropolar ferromagnetic fluid heated from below saturating a porous medium. Appl Math Comput. 2009;215(7):2591–2607. https://doi.org/10.1016/j.amc.2009.08.063
  24. Singh B. Effect of rotation on a layer of micro-polar ferromagnetic dusty fluid heated from below saturating a porous medium. Int J Eng Res Appl. 2016;6(3):4–28.
  25. Kumar S, Pundir R, Nadian PK. Effect of dust particles on a rotating couple-stress ferromagnetic fluid heated from below. Int J Sci Eng Appl Sci. 2020.
  26. Nanjundappa C, Pavithra A, Shivakuamara I. Effect of dusty particles on Darcy-Brinkman gravity driven ferro-thermal-convection in a ferrofluid saturated porous layer with internal heat source: influence of boundaries. Int J Appl Comput Math. 2021;7:1–20. https://doi.org/10.1007/s40819-020-00948-6
  27. Khan D, Rahman AU, Ali G, Kumam P, Kaewkhao A, Khan I. The effect of wall shear stress on two phase fluctuating flow of dusty fluids by using Lighthill technique. Water. 2021;13(11):1587. https://doi.org/10.3390/w13111587
  28. Khan D, Ali G, Kumam P, Rahman AU. A scientific outcome of wall shear stress on dusty viscoelastic fluid along heat absorbing in an inclined channel. Case Stud Therm Eng. 2022;30:101764. https://doi.org/10.1016/j.csite.2022.101764
  29. Khan D, Hussien MA, Elsiddieg AM, Lone SA, Hassan AM. Exploration of generalized two phase free convection magnetohydrodynamic flow of dusty tetra-hybrid Casson nanofluid between parallel microplates. Nanotechnol Rev. 2023;12(1):20230102. https://doi.org/10.1515/ntrev-2023-0102
  30. Kumam P, Kumam W, Suttiarporn P, Rehman A, et al. Relative magnetic field and slipping effect on Casson dusty fluid of two phase fluctuating flow over inclined parallel plate. S Afr J Chem Eng. 2023;44:135–146. https://doi.org/10.1016/j.sajce.2023.01.010
  31. Khan D, Kumam P, Watthayu W, Jarad F. Exploring the potential of heat transfer and entropy generation of generalized dusty tetra hybrid nanofluid in a microchannel. Chin J Phys. 2024;89:1009–1023. https://doi.org/10.1016/j.cjph.2023.10.006
  32. Siddheshwar PG. Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries. J Magn Magn Mater. 1995;149(1–2):148–150. https://doi.org/10.1016/0304-8853(95)00358-4
  33. Surya D, Gupta A. Thermal instability in a liquid layer with permeable boundaries under the influence of variable gravity. Eur J Mech B Fluids. 2022;91:219–225. https://doi.org/10.1016/j.euromechflu.2021.10.010
  34. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. 10th ed. Basingstoke: Courier Corporation; 2013.
  35. Prakash J, Kumar R, Kumari K. Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity: A correction applied. Stud Geotech Mech. 2017;39(3):39–46. https://doi.org/10.1515/sgem-2017-0028
  36. Beavers GS, Joseph DD. Boundary conditions at a naturally permeable wall. J Fluid Mech. 1967;30(1):197–207. https://doi.org//10.1017/S0022112067001375
  37. Kumar P, Thakur A, Kaur M, Kumar A. Numerical investigation of the impact of magnetic field dependent viscosity on darcy–brinkman ferromagnetic convection with permeable boundaries. Special Topics & Reviews in Porous Media: An International Journal. 2025;16(4). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2024054589
DOI: https://doi.org/10.2478/ama-2025-0040 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 327 - 336
Submitted on: Dec 28, 2024
|
Accepted on: May 3, 2025
|
Published on: Jun 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Awneesh KUMAR, Pankaj KUMAR, Abhishek THAKUR, Mandeep KAUR, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.