References
- Scherer C, Figueiredo Neto AM. Ferrofluids: properties and applications. Braz J Phys. 2005;35(3A):718–727. https://doi.org/10.1590/S0103-97332005000400018
- Kole M, Khandekar S. Engineering applications of ferrofluids: A review. J Magn Magn Mater. 2021;537:168222. https://doi.org/10.1016/j.jmmm.2021.168222
- Genc S, Derin B. Synthesis and rheology of ferrofluids: a review. Curr Opin Chem Eng. 2014;3:118–124. https://doi.org/10.1016/j.coche.2013.12.006
- Alsaady M, Fu R, Li B, Boukhanouf R, Yan Y. Thermo-physical properties and thermo-magnetic convection of ferrofluid. Appl Therm Eng. 2015;88:14–21. https://doi.org/10.1016/j.applthermaleng.2014.09.087
- Ivanov AO, Kantorovich SS, Reznikov EN, Holm C, Pshenichnikov AF, Lebedev AV, et al. Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Phys Rev E. 2007;75(6):061405. https://doi.org/10.1103/PhysRevE.75.061405
- Finlayson BA. Convective instability of ferromagnetic fluids. J Fluid Mech. 1970;40(4):753–767. https://doi.org/10.1017/S0022112070000423
- Schwab L, Hildebrandt U, Stierstadt K. Magnetic Bénard convection. J Magn Magn Mater. 1983;39(1–2):113–114. https://doi.org/10.1016/0304-8853(83)90412-2
- Sunil, Sharma A, Sharma D, Kumar P. Effect of magnetic field–dependent viscosity on thermal convection in a ferromagnetic fluid. Chem Eng Commun. 2008;195(5):571–583. https://doi.org/10.1080/00986440701707719
- Dhiman J, Sharma N. Thermal instability of hot ferrofluid layer with temperature-dependent viscosity. Int J Fluid Mech Res. 2018;45(5):389–398. https://doi.org/10.1615/InterJFluidMechRes.2018016842
- Dhiman JS, Sharma N. Effect of temperature dependent viscosity on thermal convection in ferrofluid layer. J Theor Appl Mech. 2021; 51:3–21.
- Vaidyanathan G, Sekar R, Balasubramanian R. Ferroconvective instability of fluids saturating a porous medium. Int J Eng Sci. 1991;29(10):1259–1267. https://doi.org/10.1016/0020-7225(91)90029-3
- Venkatasubramanian S, Kaloni PN. Effects of rotation on the thermo-convective instability of a horizontal layer of ferrofluids. Int J Eng Sci. 1994;32(2):237–256. https://doi.org/10.1016/0020-7225(94)90004-3
- Chand P, Bharti PK, Mahajan A, et al. Thermal convection in micropolar ferrofluid in the presence of rotation. J Magn Magn Mater. 2008;320(3–4):316–324. https://doi.org/10.1016/j.jmmm.2007.06.006
- Prakash J, Manan S, Kumar P. Ferromagnetic convection in a sparsely distributed porous medium with magnetic field dependent viscosity revisited. J Porous Media. 2018;21(8). https://doi.org/10.1615/JPorMedia.2018018832
- Prakash J, Kumar P, Manan S, Sharma K. The effect of magnetic field dependent viscosity on ferromagnetic convection in a rotating sparsely distributed porous medium-revisited. Int J Appl Mech Eng. 2020;25(1):142–158. https://doi.org/10.2478/ijame-2020-0010
- Kumar P, Kaur M, Thakur A, Bala R. On estimating the growth rate of perturbations in Rivlin-Ericksen ferromagnetic convection with magnetic field dependent viscosity. Tech Mech. 2024;44(1):1–13. https://doi.org/10.24352/UB.OVGU-2024-0512024
- Kaur M, Kumar P, Manan S, Kumar A. Combined effect of magnetic field dependent viscosity and fluid-permeable, magnetic boundaries on convective instabilities in a hot ferrofluid layer. J Taibah Univ Sci. 2025;19(1):2464462. https://doi.org/10.1080/16583655.2025.2464462
- Sunil, Sharma A, Sharma D, Sharma R. Effect of dust particles on thermal convection in a ferromagnetic fluid. Z Naturforsch A. 2005;60(7):494–502. https://doi.org/10.1515/zna-2005-0705
- Sunil, Sharma A, Shandil R. Effect of magnetic field dependent viscosity on ferroconvection in the presence of dust particles. J Appl Math Comput. 2008;27:7–22. https://doi.org/10.1007/s12190-008-0055-2
- Sunil, Divya, Sharma R. The effect of magnetic-field-dependent viscosity on ferroconvection in a porous medium in the presence of dust particles. J Geophys Eng. 2004;1(4):277–286. https://doi.org/10.1088/1742-2132/1/4/006
- Sharma A, Kumar P et al. Effect of magnetic field dependent viscosity and rotation on ferroconvection in the presence of dust particles. Appl Math Comput. 2006;182(1):82–88. https://doi.org/10.1016/j.amc.2006.03.037
- Kumar P, Kumar A, Thakur A. Effect of viscosity variation with temperature on convective instability in a hot dusty ferrofluid layer with permeable boundaries. Numer Heat Transf B. 2024;1–18. https://doi.org/10.1080/10407790.2024.2380755
- Mittal R, Rana U. Effect of dust particles on a layer of micropolar ferromagnetic fluid heated from below saturating a porous medium. Appl Math Comput. 2009;215(7):2591–2607. https://doi.org/10.1016/j.amc.2009.08.063
- Singh B. Effect of rotation on a layer of micro-polar ferromagnetic dusty fluid heated from below saturating a porous medium. Int J Eng Res Appl. 2016;6(3):4–28.
- Kumar S, Pundir R, Nadian PK. Effect of dust particles on a rotating couple-stress ferromagnetic fluid heated from below. Int J Sci Eng Appl Sci. 2020.
- Nanjundappa C, Pavithra A, Shivakuamara I. Effect of dusty particles on Darcy-Brinkman gravity driven ferro-thermal-convection in a ferrofluid saturated porous layer with internal heat source: influence of boundaries. Int J Appl Comput Math. 2021;7:1–20. https://doi.org/10.1007/s40819-020-00948-6
- Khan D, Rahman AU, Ali G, Kumam P, Kaewkhao A, Khan I. The effect of wall shear stress on two phase fluctuating flow of dusty fluids by using Lighthill technique. Water. 2021;13(11):1587. https://doi.org/10.3390/w13111587
- Khan D, Ali G, Kumam P, Rahman AU. A scientific outcome of wall shear stress on dusty viscoelastic fluid along heat absorbing in an inclined channel. Case Stud Therm Eng. 2022;30:101764. https://doi.org/10.1016/j.csite.2022.101764
- Khan D, Hussien MA, Elsiddieg AM, Lone SA, Hassan AM. Exploration of generalized two phase free convection magnetohydrodynamic flow of dusty tetra-hybrid Casson nanofluid between parallel microplates. Nanotechnol Rev. 2023;12(1):20230102. https://doi.org/10.1515/ntrev-2023-0102
- Kumam P, Kumam W, Suttiarporn P, Rehman A, et al. Relative magnetic field and slipping effect on Casson dusty fluid of two phase fluctuating flow over inclined parallel plate. S Afr J Chem Eng. 2023;44:135–146. https://doi.org/10.1016/j.sajce.2023.01.010
- Khan D, Kumam P, Watthayu W, Jarad F. Exploring the potential of heat transfer and entropy generation of generalized dusty tetra hybrid nanofluid in a microchannel. Chin J Phys. 2024;89:1009–1023. https://doi.org/10.1016/j.cjph.2023.10.006
- Siddheshwar PG. Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries. J Magn Magn Mater. 1995;149(1–2):148–150. https://doi.org/10.1016/0304-8853(95)00358-4
- Surya D, Gupta A. Thermal instability in a liquid layer with permeable boundaries under the influence of variable gravity. Eur J Mech B Fluids. 2022;91:219–225. https://doi.org/10.1016/j.euromechflu.2021.10.010
- Chandrasekhar S. Hydrodynamic and hydromagnetic stability. 10th ed. Basingstoke: Courier Corporation; 2013.
- Prakash J, Kumar R, Kumari K. Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity: A correction applied. Stud Geotech Mech. 2017;39(3):39–46. https://doi.org/10.1515/sgem-2017-0028
- Beavers GS, Joseph DD. Boundary conditions at a naturally permeable wall. J Fluid Mech. 1967;30(1):197–207. https://doi.org//10.1017/S0022112067001375
- Kumar P, Thakur A, Kaur M, Kumar A. Numerical investigation of the impact of magnetic field dependent viscosity on darcy–brinkman ferromagnetic convection with permeable boundaries. Special Topics & Reviews in Porous Media: An International Journal. 2025;16(4). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2024054589