Have a personal or library account? Click to login

Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration

Open Access
|Oct 2024

References

  1. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5): 363-408. Available from: https://doi:10.1615/critrevbiomedeng.v40.i5.10
  2. Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128-154. Available from: https://doi:10.1007/s40883-018-0072-0
  3. Belaid H, Nagarajan S, Teyssier C, Barou C, Barés J, Balme S, Garay H, Huon V, Cornu D, Cavaillès V, Bechelany M. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials science & engineering. C. Materials for biological applications. 2020;110:110595. Available from: https://doi:10.1016/j.msec.2019.110595
  4. Tang D., Tare RS., Yang L.Y., Williams DF., Ou K.L.& Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016; 83: 363-382.
  5. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. Available from: https://doi:10.1016/j.biomaterials.2018.07.017
  6. Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019;4:3429527. Available from: https://doi:10.1155/2019/3429527
  7. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. EXPRESS Polym Lett. 2015;9(5):435-455. Available from: https://doi:10.3144/expresspolymlett.2015.42
  8. Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106(4):887-894. Available from: https://doi:10.1002/jbm.a.36289
  9. Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater. 2011;4(3):451-460. Available from: https://doi:10.1016/j.jmbbm.2010.12.006
  10. Al-Itry R. Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stabil. 2012;97(10):1898-1914. Available from: https://doi:10.1016/j.polymdegradstab.2012.06.028
  11. Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci. 2009;10(9):4033-4065. Available from: https://doi:10.3390/ijms10094033
  12. Shick TM, Kadir AZA, Ngadiman NHA, Ma’aram A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J Bioact Compat Polym. 2019; 34(6): 415-435. Available from: https://doi:10.1177/0883911519877426.
  13. Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 2019;12(4):568. Available from: https://doi:10.3390/ma12040568
  14. Caballero DE, Montini-Ballarin F, Gimenez JM, & Urquiza SA. Multiscale constitutive model with progressive recruitment for nano-fibrous scaffolds. Journal of the Mechanical Behavior of Bi-omedical Materials. 2019;98:225-234.
  15. Farto-Vaamonde X, Auriemma G. Aquino RP, Concheiro A, & Alvarez-Lorenzo C. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2019;141:100–110. Available from: https://doi.org/10.1016/j.ejpb.2019.05.018
  16. Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of poly-mer-based gradient scaffolds Acta Biomater. 2017;56:3–13.
  17. Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds PLoS ONE. 2018;13. Available from: https://doi.org/10.1371/journal.pone.0195291
  18. Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV & Dalton PD. 3D printing strategies for peripheral nerve re-generation. Biofabrication. 2018;10(3):032001. Available from: https://doi.org/10.1088/1758-5090/aaaf50
  19. Ghosh U, Ning S, Wang Y, & Kong YL. Addressing un-met clinical needs with 3D printing technologies. Advanced healthcare materials, 2018;7(17):1800417.
  20. Czyzewski P, Marciniak D, Nowinka B, Borowiak M, Bielinski M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers: MDPI. 2022;14:356. Available from: https://doi.org/10.3390/polym14020356
  21. Dai Z, Ronholm J, Tian Y, Stehi B, Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng. 2016;7:2041731416648810. Available from: https://doi:10.1177/2041731416648810
  22. Han QF, Wang ZW, Tang CY, Chen L, Tsui CP, Law WC. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material. J Mech Behav Biomed Mater. 2017;71:262-270. Available from: https://doi:10.1016/j.jmbbm.2017.03.032
  23. Vieira AC, Guedes RM, Marques AT, Tita V. Material model proposal for the design of biodegradable plastic structures. In: Proceedings of the 10th World Congress on Computational Mechanics. Blucher: São Paulo. 2014; 2512-2529. Available from: https://doi:10.5151/meceng-wccm2012-18893
  24. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. Available from: https://doi:10.3389/fbioe.2019.00259
  25. Tew GN, Bhatia SR. PLA–PEO–PLA hydrogels and their mechanical properties. In: Bhatia SK (ed.). Engineering Biomaterials for Regenerative Medicine. Springer: New York. 2012; 127-140. Available from: https://doi:10.1007/978-1-4614-1080-5_5
  26. Da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018; 340: 9-14. Available from: https://doi:10.1016/j.cej.2018.01.010
  27. Guo Z, Yang C, Zhou Z, Chen S, Li F. Characterization of biodegradable poly (lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering. RSC Adv. 2017; 7(54): 34063-34070. Available from: https://doi:10.1039/C7RA03574H
  28. Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K, Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP. 2016;46:33-38. Available from: https://doi.org/10.1016/j.procir.2015.07.025
  29. Karimipour-Fard P, Pop-Iliev R, Jones-Taggart H, Rizvi G. Design of 3D scaffold geometries for optimal biodegradation of poly(lactic acid)-based bone tissue. AIP Conference Proceedings 10 January 2020; 2205(1):020062. Available from: https://doi.org/10.1063/1.5142977
  30. Jiang D, Ning F. Fused filament fabrication of biode-gradable PLA/316L composite scaffolds: Effects of metal particle content. Procedia Manufacturing. 2020;48:755-762.
  31. Zhu X, Zhong T, Huang R, Wan A. Preparation of hy-drophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. Journal of biomaterials science. Polymer edi-tion, 2015;26(17):1286-1296. Available from: https://doi.org/10.1080/09205063.2015.1088125
  32. Zohoor S, Abolfathi N, Solati-Hashjin M. Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration. Iranian Polymer Journal, 2023, 32:1209–1227. Available from: https://doi.org/10.1007/s13726-023-01191-8
DOI: https://doi.org/10.2478/ama-2024-0072 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 682 - 689
Submitted on: Jul 7, 2023
Accepted on: Feb 23, 2024
Published on: Oct 30, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Paula Kundreckaitė, Andžela Šešok, Rimantas Stonkus, Gediminas Gaidulis, Eliza Romańczuk-Ruszuk, Jolanta Pauk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.