References
- Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5): 363-408. Available from: https://doi:10.1615/critrevbiomedeng.v40.i5.10
- Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128-154. Available from: https://doi:10.1007/s40883-018-0072-0
- Belaid H, Nagarajan S, Teyssier C, Barou C, Barés J, Balme S, Garay H, Huon V, Cornu D, Cavaillès V, Bechelany M. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Materials science & engineering. C. Materials for biological applications. 2020;110:110595. Available from: https://doi:10.1016/j.msec.2019.110595
- Tang D., Tare RS., Yang L.Y., Williams DF., Ou K.L.& Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016; 83: 363-382.
- Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. Available from: https://doi:10.1016/j.biomaterials.2018.07.017
- Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019;4:3429527. Available from: https://doi:10.1155/2019/3429527
- Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. EXPRESS Polym Lett. 2015;9(5):435-455. Available from: https://doi:10.3144/expresspolymlett.2015.42
- Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2018;106(4):887-894. Available from: https://doi:10.1002/jbm.a.36289
- Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater. 2011;4(3):451-460. Available from: https://doi:10.1016/j.jmbbm.2010.12.006
- Al-Itry R. Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stabil. 2012;97(10):1898-1914. Available from: https://doi:10.1016/j.polymdegradstab.2012.06.028
- Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci. 2009;10(9):4033-4065. Available from: https://doi:10.3390/ijms10094033
- Shick TM, Kadir AZA, Ngadiman NHA, Ma’aram A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J Bioact Compat Polym. 2019; 34(6): 415-435. Available from: https://doi:10.1177/0883911519877426.
- Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 2019;12(4):568. Available from: https://doi:10.3390/ma12040568
- Caballero DE, Montini-Ballarin F, Gimenez JM, & Urquiza SA. Multiscale constitutive model with progressive recruitment for nano-fibrous scaffolds. Journal of the Mechanical Behavior of Bi-omedical Materials. 2019;98:225-234.
- Farto-Vaamonde X, Auriemma G. Aquino RP, Concheiro A, & Alvarez-Lorenzo C. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2019;141:100–110. Available from: https://doi.org/10.1016/j.ejpb.2019.05.018
- Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of poly-mer-based gradient scaffolds Acta Biomater. 2017;56:3–13.
- Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds PLoS ONE. 2018;13. Available from: https://doi.org/10.1371/journal.pone.0195291
- Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV & Dalton PD. 3D printing strategies for peripheral nerve re-generation. Biofabrication. 2018;10(3):032001. Available from: https://doi.org/10.1088/1758-5090/aaaf50
- Ghosh U, Ning S, Wang Y, & Kong YL. Addressing un-met clinical needs with 3D printing technologies. Advanced healthcare materials, 2018;7(17):1800417.
- Czyzewski P, Marciniak D, Nowinka B, Borowiak M, Bielinski M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers: MDPI. 2022;14:356. Available from: https://doi.org/10.3390/polym14020356
- Dai Z, Ronholm J, Tian Y, Stehi B, Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng. 2016;7:2041731416648810. Available from: https://doi:10.1177/2041731416648810
- Han QF, Wang ZW, Tang CY, Chen L, Tsui CP, Law WC. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material. J Mech Behav Biomed Mater. 2017;71:262-270. Available from: https://doi:10.1016/j.jmbbm.2017.03.032
- Vieira AC, Guedes RM, Marques AT, Tita V. Material model proposal for the design of biodegradable plastic structures. In: Proceedings of the 10th World Congress on Computational Mechanics. Blucher: São Paulo. 2014; 2512-2529. Available from: https://doi:10.5151/meceng-wccm2012-18893
- Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. Available from: https://doi:10.3389/fbioe.2019.00259
- Tew GN, Bhatia SR. PLA–PEO–PLA hydrogels and their mechanical properties. In: Bhatia SK (ed.). Engineering Biomaterials for Regenerative Medicine. Springer: New York. 2012; 127-140. Available from: https://doi:10.1007/978-1-4614-1080-5_5
- Da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018; 340: 9-14. Available from: https://doi:10.1016/j.cej.2018.01.010
- Guo Z, Yang C, Zhou Z, Chen S, Li F. Characterization of biodegradable poly (lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering. RSC Adv. 2017; 7(54): 34063-34070. Available from: https://doi:10.1039/C7RA03574H
- Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K, Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP. 2016;46:33-38. Available from: https://doi.org/10.1016/j.procir.2015.07.025
- Karimipour-Fard P, Pop-Iliev R, Jones-Taggart H, Rizvi G. Design of 3D scaffold geometries for optimal biodegradation of poly(lactic acid)-based bone tissue. AIP Conference Proceedings 10 January 2020; 2205(1):020062. Available from: https://doi.org/10.1063/1.5142977
- Jiang D, Ning F. Fused filament fabrication of biode-gradable PLA/316L composite scaffolds: Effects of metal particle content. Procedia Manufacturing. 2020;48:755-762.
- Zhu X, Zhong T, Huang R, Wan A. Preparation of hy-drophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. Journal of biomaterials science. Polymer edi-tion, 2015;26(17):1286-1296. Available from: https://doi.org/10.1080/09205063.2015.1088125
- Zohoor S, Abolfathi N, Solati-Hashjin M. Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration. Iranian Polymer Journal, 2023, 32:1209–1227. Available from: https://doi.org/10.1007/s13726-023-01191-8