References
- Djaouti AM, Khan ZA, Liaqat MI, Al-Quran A. A novel technique for solving the nonlinear fractional-order smoking model. Fractal and Fractional. 2024; 8(5):286. https://doi.org/10.3390/fractalfract8050286
- Liaqat MI, Etemad S, Rezapour S, Park C. A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics. 2022; 7(9):16917-16948. https://doi.org/10.3934/math.2022929
- Djaouti AM, Khan ZA, Liaqat MI, Al-Quran A. Existence uniqueness and averaging principle of fractional neutral stochastic differential equations in the Lp Space with the framework of the Ψ-Caputo derivative. Mathematics. 2024;12(7): 1-21. https://doi.org/10.3390/math12071037
- Owolabi KM, Hammouch Z. Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative. Physica A: Statistical Mechanics and its Applications. 2019; 523: 1072-1090. https://doi.org/10.1016/j.physa.2019.04.017
- Djaouti AM, Khan ZA, Liaqat MI, Al-Quran A. A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives. Mathematics. 2024;12(11): 1654. https://doi.org/10.3390/math12111654
- Tenreiro Machado JA. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative. Fractional Calculus and Applied Analysis. 2021; 24(4): 1003-1014. https://doi.org/10.1515/fca-2021-0043
- Ahmad B, Ntouyas SK, Alsaedi A. Fractional order differential systems involving right Caputo and left Riemann–Liouville fractional derivatives with nonlocal coupled conditions. Boundary value problems. 2019(1): 1-12. https://doi.org/10.1186/s13661-019-1222-0
- Sene N. Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents. Journal of King Saud University-Science. 2021; 33(1): 101275. https://doi.org/10.1016/j.jksus.2020.101275
- Shah K, Alqudah MA, Jarad F, Abdeljawad T. Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative. Chaos, Solitons&Fractals. 2020;135: 109754. https://doi.org/10.1016/j.chaos.2020.109754
- Ghanbari B, Djilali S. Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Mathematical Methods in the Applied sciences, 2020; 43(4):1736-1752. https://doi.org/10.1002/mma.5999
- Liaqat MI, Akgül A, Prosviryakov EY. An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients. Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences. 2023; 27(2): 214-240. https://doi.org/10.14498/vsgtu2009
- Liaqat MI, Akgül A, De la Sen M, Bayram, M. Approximate and exact solutions in the sense of conformable derivatives of quantum mechanics models using a novel algorithm. Symmetry. 2023; 15(3): 744. https://doi.org/10.3390/sym15030744
- Cheng X, Hou J, Wang L. Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube. Computational and Applied Mathematics. 2021; 40:1-17. https://doi.org/10.1007/s40314-021-01486-7
- Paliathanasis A, Bogadi RS, Govender M. Lie symmetry approach to the time-dependent Karmarkar condition. The European Physical Journal C. 2022; 82(11): 987. https://doi.org/10.1140/epjc/s10052-022-10929-2
- Sahoo S, Ray SS, Abdou M.A. New exact solutions for time-fractional Kaup-Kupershmidt equation using improved (G′/G)-expansion and extended (G′/G)-expansion methods. Alexandria Engineering Journal. 2020; 59(5): 3105-3110. https://doi.org/10.1016/j.cjph.2016.10.019
- Jena SK, Chakraverty S. Dynamic behavior of an electromagnetic nanobeam using the Haar wavelet method and the higher-order Haar wavelet method. The European Physical Journal Plus. 2019;134(10): 538. https://doi.org/10.1140/epjp/i2019-12874-8
- Yi M, Huang J. Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Applied Mathematics and Computation. 2014; 230: 383-394. https://doi.org/10.1016/j.amc.2013.06.102
- Cinar M, Secer A, Ozisik M, Bayram M. Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Optical and Quantum Electronics. 2022; 54(7): 402. https://doi.org/10.1007/s11082-022-03819-0
- Atabakzadeh MH, Akrami MH, Erjaee GH. Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Applied Mathematical Modelling. 2013; 37(20-21): 8903-8911. https://doi.org/10.1016/j.apm.2013.04.019
- Liaqat MI, Akgül A, Bayram M. Series and closed form solution of Caputo time-fractional wave and heat problems with the variable coefficients by a novel approach. Optical and Quantum Electronics. 2024;56(2):203. https://doi.org/10.1007/s11082-023-05751-3
- Naik PA, Zu J, Ghoreishi M. Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. Chaos, Solitons & Fractals. 2020;131:109500. https://doi.org/10.1016/j.chaos.2019.109500 Get rights and content
- Zeidan D, Chau CK, Lu TT, Zheng WQ. Mathematical studies of the solution of Burgers' equations by Adomian decomposition method. Mathematical Methods in the Applied Sciences. 2020; 43(5): 2171-2188. https://doi.org/10.1002/mma.5982
- Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Rabczuk T. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering. 2020; 362:112790. https://doi.org/10.1016/j.cma.2019.112790
- Majeed A, Kamran M, Iqbal MK, Baleanu D. Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method. Advances in Difference Equations. 2020;(1):1-15. https://doi.org/10.1186/s13662-020-02619-8
- Ganji RM, Jafari H, Baleanu D. A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel. Chaos. Solitons & Fractals. 2020; 130:109405. https://doi.org/10.1016/j.chaos.2019.109405
- Eriqat T, El-Ajou A, Moa'ath NO, Al-Zhour Z, Momani S. A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos. Solitons&Fractals. 2020; 138: 109957. https://doi.org/10.1016/j.chaos.2020.109957
- Yüzbaşı Ş. Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Applied Mathematics and Computation, 2013;219(11): 6328-6343. https://doi.org/10.1016/j.amc.2012.12.006
- Liaqat MI, Akgül A, Abu-Zinadah H. Analytical investigation of some time-fractional Black–Scholes models by the Aboodh residual power series method. Mathematics. 2023;11(2): 276. https://doi.org/10.3390/math11020276
- Jafarian A, Mokhtarpour M, Baleanu D. Artificial neural network approach for a class of fractional ordinary differential equation. Neural Computing and Applications. 2017; 28: 765-773.
- Li HL, Jiang YL, Wang Z, Zhang L, Teng Z. Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network. Applied Mathematics and Computation. 2015;270: 269-277. https://doi.org/10.1016/j.amc.2015.08.043
- Qureshi S, Kumar P. Using Shehu integral transform to solve fractional order Caputo type initial value problems. Journal of Applied Mathematics and Computational Mechanics. 2019; 18(2):75-83. https://doi.org/10.17512/jamcm.2019.2.07
- Jena SR, Sahu I. A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment. Physica Scripta. 2023; 98(8): 085231. https://doi.org/10.1088/1402-4896/ace6de
- Shah R, Saad Alshehry A, Weera W. A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu transform. Symmetry. 2022; 14(7): 1458. https://doi.org/10.3390/sym14071458