Have a personal or library account? Click to login
Novel Integral Transform Treating Some Ψ-Fractional Derivative Equations Cover

Novel Integral Transform Treating Some Ψ-Fractional Derivative Equations

Open Access
|Aug 2024

References

  1. Chu Y-M, Rashid S, Karim S, Khalid A, Elagan S-K. Deterministic-stochastic analysis of fractional differential equations malnutrition model with random perturbations and crossover effects. Sci Rep. 2023;13(1):14824. https://doi:10.1038/s41598-023-41861-4
  2. Al-Qurashi M, Asif Q. U-A, Chu Y-M, Rashid S, Elagan SK. Complexity analysis and discrete fractional difference implementation of the Hindmarsh–Rose neuron system. Results in Physics. 2023;51 106627:2211-3797. https://doi.org/10.1016/j.rinp.2023.106627
  3. Alsharidi AK, Rashid S, Elagan SK. Short-memory discrete fractional difference equation wind turbine model and its inferential control of a chaotic permanent magnet synchronous transformer in time-scale analysis. AIMS Mathematics. 2023;8(8):19097-19120. https://doi.10.3934/math.2023975
  4. Kanan M, Ullah H, Raja M-A. Z, Fiza M, Ullah H, Shoaib M., Akgül A, Asad J. Intelligent computing paradigm for second-grade fluid in a rotating frame in a fractal porous medium. Fractals. 2023;31(08): 2340175. https://doi.org/10.1142/S0218348X23401758
  5. Rashid S, Noorb MA, Noor K. I. Caputo fractional derivatives and inequalities via preinvex stochastic processes, Published by Faculty of Sciences and Mathematics. University of Nis. Serbia. Filomat. 2023;37(19):6569–6584. https://doi.org/10.2298/FIL2319569R
  6. Li W, Farooq U, Waqas H, Alharthi AM, Fatima N, Hassan AM, Muhammad T, Akgül A. Numerical simulations of Darcy-forchheimer flow of radiative hybrid nanofluid with Lobatto-IIIa scheme configured by a stretching surface. Case Studies in Thermal Engineering. 2023;49:103364:214-157X. https://doi.org/10.1016/j.csite.2023.103364
  7. Faridi WA, Abu Bakar M, Akgül A, Abd El-Rahman M, El Din SM. Exact fractional soliton solutions of thin-film ferroelectric matrial equation by analytical approaches. Alexandria Engineering Journal. 2023;78:483-497. https://doi.org/10.1016/j.aej.2023.07.049
  8. Ashraf R, Hussain S, Ashraf F, Akgül A, El Din SM. The extended Fan’s sub-equation method and its application to nonlinear Schrödinger equation with saturable nonlinearity. Results in Physics. 2023;52:106755 https://doi.org/10.1016/j.rinp.2023.106755
  9. Khan SA, Yasmin S, Waqas H, Az-Zo’bi EA, Alhushaybari A, Akgül A, Hassan A. M, Imran M. Entropy optimized Ferro-copper/blood based nanofluid flow between double stretchable disks: Application to brain dynamic. Alexandria Engineering Journal. 2023;79:296-307. https://doi.org/10.1016/j.aej.2023.08.017
  10. Faridi WA, Abu Bakar M, Myrzakulova Z, Myrzakulov R, Akgül A, El Din S. M. The formation of solitary wave solutions and their propagation for Kuralay equation. Results in Physics. 2023;52:106774. https://doi.org/10.1016/j.rinp.2023.106774
  11. Rashid S, Karim S, Akgül A, Bariq A, Elagan SK. Novel insights for a nonlinear deterministic-stochastic class of fractional-order Lassa fever model with varying kernels. Sci Rep 2023;13:15320. https://doi.org/10.1038/s41598-023-42106-0
  12. Zhou S-S, Rashid S, Set E, Garba Ahmad A, Hamed YS. On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics. 2021;6(9):9154–9176. https://doi.org/1010.3934/math.2021532
  13. Rashid S, Abouelmagd E. I, Sultana S, Chu Y-M. New developments in weighted n-fold type inequalities via discrete generalized ℏ̂ - proportional fractional operators. Fractals. 2022; 30(02):2240056. https://doi.org/10.1142/S0218348X22400564
  14. Rashid S, Abouelmagd E. I, Khalid A, Farooq FB, Chu Y-M. Some recent developments on dynamical ℏ̂ -discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals. 2022; 30 (02):2240110. https://doi.org/10.1142/S0218348X22401107
  15. Rashid S, Sultana S, Hammouch Z, Jarad F, Hamed YS. Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ̂ -discrete Mittag-Leffler kernels and application. Chaos. Solitons & Fractals. 2021;151:111204. https://doi.org/10.1016/j.chaos.2021.111204
  16. Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 2016;20(2):763--769. http://dx.doi.org/10.2298/TSCI160111018A
  17. Chu Y-M, Rashid S, Asif Q. U-A, Abdalbagi M. On configuring new choatic behaviours for a variable fractional-order memristor-based circuit in terms of Mittag-Leffler kernel. Results in Physics. 2023;53: 106939. https://doi.org/10.1016/j.rinp.2023.106939
  18. Rashid S, Khalid A, Bazighifan O, Oros G.I. New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications. Mathematics. 2021;9:1753. https://doi.org/10.3390/math9151753
  19. Érdlyi A. An integral equation involving Legendre functions, J. Soc. Indust. Appl. Math. 1964;12(1):15-30. https://doi.org/10.1137/0112002
  20. OSLR TJ. Leibniz rule for fractional derivatives and an application to infinite series. SlAM J. Appl. Math. 1970;18(3):658--674. https://doi.org/10.1137/0118059
  21. Almeida R. A caputo fractional derivative of a function with respect to another function. Communications in Nonlinear Science and Numerical Simulation. 2017;44:460--481. https://doi.org/10.1016/j.cnsns.2016.09.006
  22. Almeida R. Further properties of Osler’s generalized fractional integrals and derivatives with respect to another function. Rocky Mountain J. Math. 2019;49(8):2459--2493. https://doi.org/10.1216/RMJ-2019-49-8-2459
  23. Sousa JV da C, Oliveira EC de. On the Ψ-Hilfer Fractional Derivative. Commun. Nonlinear Sci. Numer. Simul. 2018;60:72-91. https://doi.org/10.1016/j.cnsns.2018.01.005
  24. Yang X-J. General fractional derivatives: theory, methods and applications. CRC Press. New York 2019. https://doi.org/10.1201/9780429284083
  25. Jarad F, Abdeljawad T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. 2020;13(3):709–722. https://doi.org/10.3934/dcdss.2020039
  26. Singh Y, Gill V, Kundu S, Kumar D. On the Elzaki transform and its application in fractional free electron laser equation. Acta Univ. Sapientiae Mathem. 2019;11(2):419--429. https://doi.org/10.2478/ausm-2019-0030
  27. Elzaki TM. The New Integral Transform (Elzaki Transform) fundamental properties investigations and applications. GJPAM. 2011;7(1):57—64.
  28. Almeida R, Malinowska AB, Odzijewicz T. An extension of the fractional gronwall inequality, in Conference on Non-Integer Order Calculus and Its Applications. Springer. 2018:20-28. https://doi.org/10.1007/978-3-030-17344-9_2
  29. Ali A, Minamoto T. A new numerical technique for investigating boundary value problems with Ψ-Caputo fractional operator. Journal of Applied Analysis & Computation. 2023;13(1):275--297. https://doi.org/10.11948/20220062
  30. Sousa JV da C, Oliveira E C de. On the Ψ-fractional integral and applications. Comp. Appl. Math. 2019;38(4). https://doi.org/10.1007/s40314-019-0774-z
  31. Bulut H, Baskonus HM, Bin Muhammad Belgacem F. The Analytical Solutions of Some Fractional Ordinary Differential Equations By Sumudu Transform Method. Abs. Appl. Anal. 2013;2013(6):203875. https://doi.org/10.1155/2013/203875
  32. Jafari H. A new general integral transform for solving integral equations. J Adv Res. 2021;32:133--138. https://doi.org/10.1016/j.jare.2020.08.016
  33. Elzaki MT, Chamekh M. Solving nonlinear fractional differential equations using a new decomposition method. Universal Journal of Applied Mathematics & Computation. 2018;6:27-35.
  34. Fahad HM, Ur Rehman M, Fernandez A. On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Methods Appl. Sci. 2021;1-20. https://doi.org/10.1002/mma.7772
  35. Prabhakar TR. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971;19:7-15.
  36. Pang D, Jiang W, Niazi AUK. Fractional derivatives of the generalized Mittag-Leffler functions. Adv. Differ. Equ. 2018;2018:415. https://doi.org/10.1186/s13662-018-1855-9
  37. Harikrishnan S, Shah K, Baleanu D, et al. Note on the solution of random differential equations via Ψ-Hilfer fractional derivative. Adv Differ Equ. 2018;2018:224. https://doi.org/10.1186/s13662-018-1678-8
  38. Li C, Zeng FH. Numerical methods for fractional calculus. Chapman and Hall/CRC 2015. https://doi.org/10.1201/b18503
DOI: https://doi.org/10.2478/ama-2024-0060 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 571 - 578
Submitted on: Sep 25, 2023
Accepted on: Jan 21, 2024
Published on: Aug 1, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mourad Chamekh, Mohamed Ali Latrach, Tarig M. Elzaki, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.