Have a personal or library account? Click to login
A Review of the Relaxation Models for Phase Transition Flows Centered on the Topological Aspects of the Nonequilibrium Mass Transfer Modelling Cover

A Review of the Relaxation Models for Phase Transition Flows Centered on the Topological Aspects of the Nonequilibrium Mass Transfer Modelling

Open Access
|Aug 2024

References

  1. Saha P. Review of two-phase steam-water critical flow models with emphasis on thermal nonequilibrium.1977; NUREG/CR-0417. United States.
  2. Richter HJ. Separated two-phase flow model: application to critical two-phase flow. International Journal of Multiphase Flow. 1983; 9(5): 511-530. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(83)90015-0
  3. Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. 1975. Second Edition. Springer.
  4. Staedtke H. Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena and Related Numerical Methods. Wiley-VCH. 1st edition (October 6, 2006).
  5. Baer MR, Nunziato, JW. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow. 1986;12: 861–889.
  6. Zhang C, Menshov I, Wang L, Shen Z. Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. Journal of Computational Physics. 2022; 466: 111356. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2022.111356
  7. Bdzil JB, Menikoff R, Kapila AK, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Physics of fluids. 1999; 11: 2; 378-402. https://doi.org/10.1063/1.869887
  8. Kapila AK, Menikoff R, Bdzil JB, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Physics of fluids. 2001;13(10):3002-3024. https://doi.org/10.1063/1.1398042
  9. Pelanti M. Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer. International Journal of Multiphase Flow. 2022;153:104097. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104097
  10. Saurel R, Petitpas F, Abgrall R. Modelling phase transition in meta-stable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics. 2008;60:313–350. https://doi.org/10.1017/S0022112008002061
  11. LeMartelot S, Nkonga B, Saurel R, Liquid and liquid-gas flows at all speeds. Journal of Computational Physics 255. 2013;53–82. https://doi.org/10.1016/j.jcp.2013.08.001
  12. Lund H, Aursand P. Two-Phase Flow of CO2 with Phase Transfer. Energy Procedia. 2012;23:246-255. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2012.06.034
  13. Le Martelot S, Saurel R, Nkonga B. Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multi-phase Flow. 2014;66:62-78. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.010
  14. Saurel R, Boivin P, Le Métayer O. A general formulation for cavitating, boiling and evaporating flows. Computers & Fluids. 2016; 128: 53-64, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2016.01.004
  15. Chiapolino A, Boivin P, Saurel. A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Computers & Fluids. 2017; 150: 31-45. ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2017.03.022
  16. Demou AD, Scapin N, Pelanti M, Brandt L. A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer. Journal of Computational Physics. 2022;448:110730. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110730
  17. Stewart HB, Wendroff B. Two-phase flow: models and methods. Journal of Computational Physics. 1984;56(3):363-409.
  18. Bilicki Z, Kestin J. Physical aspects of the relaxation model in two-phase flow. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1990;428(1875):379-397.
  19. Downar-Zapolski P, Bilicki Z, Bolle L, Franco J. The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow. 1996;22(3): 473-483. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(95)00078-X
  20. Atkins P, de Paula J. Physical Chemistry. 2006; 8th ed. W.H. Freeman: 805-7. ISBN 0-7167-8759-8
  21. Einstein A. Schallausbreitung in teilweise dissoziierten Gasen [Sound propagation in partly dissociated gases]: 380-385.
  22. Mandelshtam, LI, Leontovich EM. A theory of sound absorption in liquids. Zh. Exp. Teor Fiz. 1937;7:434-449 (in Russian).
  23. Bauer EG, Houdayer, GR, Sureau HM. A non-equilibrium axial flow model in application to loss-of-coolant accident analysis. The CYSTERE system code. OECD/NEA Specialist Meeting on Transient Two-phase Flow. 1976. Toronto Canada.
  24. Angielczyk W, Bartosiewicz Y, Butrymowicz D, Seynhaeve J-M. 1-D modelling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. International Refrigeration and Air Conditioning Conference. 2010. Purdue USA.
  25. Haida M, Smolka J, Hafner A, Palacz M, Banasiak K, Nowak AJ. Modified homogeneous relaxation model for the R744 transcritical flow in a two-phase ejector, International Journal of Refrigeration. 2018;85:314-333. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2017.10.010
  26. Feburie V, Giot M, Granger S, Seynhaeve J. A model for choked flow through cracks with inlet subcooling. International Journal of Multi-phase Flow. 1993;19(4):541–562. https://doi:10.1016/0301-9322(93)90087-b
  27. Attou A, Seynhaeve JM. Steady-state critical two-phase flashing flow with possible multiple choking phenomenon. Part 1: physical modelling and numerical procedure. Journal of Loss Prevention in the Industries. 1999;12:335-345. https://doi.org/10.1016/S0950-4230(98)00017-5
  28. De Lorenzo M, Lafon P, Seynhaeve JM, Bartosiewicz Y. Benchmark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. International Journal of Multiphase Flow. 2017;92:112-130. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004
  29. Angielczyk W, Bartosiewicz Y, Butrymowicz D. Development of Delayed Equilibrium Model for CO2 convergent-divergent nozzle transonic flashing flow. International Journal of Multiphase Flow. 2020;131:103351. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103351
  30. Tammone C, Romei A, Persico G, Haglind F. Extension of the delayed equilibrium model to flashing flows of organic fluids in converging-diverging nozzles. International Journal of Multiphase Flow. 2024; 171:104661. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104661
  31. Ambroso A, Hérard J-M, Hurisse O. A method to couple HEM and HRM two-phase flow models. Computers & Fluids. 2009;38(4):738-756, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2008.04.016
  32. Palacz M, Haida M, Smolka J, Nowak AJ, Banasiak K, Hafner A. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems. Applied Thermal Engineering. 2017;115:160-169. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2016.12.122
  33. James F, Mathis H. A relaxation model for liquid-vapor phase change with metastability. 2015 arXiv preprint arXiv:1507.06333. https://doi.org/10.48550/arXiv.1507.06333
  34. De Lorenzo M, Lafon Ph, Pelanti M. A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures. Journal of Computational Physics. 2019;379: 279-308. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.12.002
  35. De Lorenzo M, Lafon Ph, Pelanti M, Pantano A, Di Matteo M, Bartosiewicz Y, Seynhaeve JM. A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressurizations. Nuclear Engineering and Design. 2021;371:110954. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2020.110954
  36. Ward CA. The rate of gas absorption at a liquid interface. The Journal of Chemical Physics. 1977; 67(1): 229-235. https://doi.org/10.1063/1.434547
  37. Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. The Journal of Chemical Physics. 1982;76(11):5599-5605. https://doi.org/10.1063/1.442865
  38. Ward CA, Fang G. Expression for predicting liquid evaporation flux: Statistical rate theory approach. Physical Review. 1999;59(1): 429. https://doi.org/10.1103/PhysRevE.59.429
  39. Schrage RW. A theoretical study of interphase mass transfer. 1953. Columbia University Press. https://doi.org/10.7312/schr90162
  40. Banasiak K, Hafner A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. International Journal of Thermal Sciences. 2011;50(11):2235-2247. ISSN 1290-0729. https://doi.org/10.1016/j.ijthermalsci.2011.06.007
  41. Bodys J, Smolka J, Palacz M, HaidaM, Banasiak K. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure. International Journal of Refrigeration. 2020;114:32-46. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2020.02.015
  42. Bodys J, Smolka J, Palacz M, Haida M, Banasiak K, Nowak AJ. Effect of turbulence models and cavitation intensity on the motive and suction nozzle mass flow rate prediction during a non-equilibrium expansion process in the CO2 ejector. Applied Thermal Engineering. 2022;201:117743, ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2021.117743
  43. Bilicki Z, Dafermos C, Kestin J, Majda G, Zeng DL. Trajectories and singular points in steady-state models of two-phase flows. International journal of multiphase flow. 1987; 13(4): 511-533.
  44. De Sterck H. Critical point analysis of transonic flow profiles with heat conduction. SIAM Journal on Applied Dynamical Systems. 2007; 6(3): 645-662. https://doi.org/10.1137/060677458
  45. Angielczyk W, Bartosiewicz Y, Butrymowicz, Seynhaeve, JM. 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. International Refrigeration and Air Conditioning Conference. 2010.
  46. Angielczyk W, Śmierciew K, Butrymowicz D. Application of a fast transonic trajectory determination approach in 1-D modelling of steady-state two-phase carbon dioxide flow. In E3S Web of Conferences. 2019; 128: 06005, EDP Sciences. https://doi.org/10.1051/e3sconf/201912806005
  47. Angielczyk W, Seynhaeve JM, Gagan J, Bartosiewicz Y, Butrymowicz D. Prediction of critical mass rate of flashing carbon dioxide flow in convergent-divergent nozzle. Chemical Engineering and Processing - Process Intensification. 2019; 143: 107599. ISSN 0255-2701. https://doi.org/10.1016/j.cep.2019.107599
  48. Angielczyk W, Butrymowicz D. Revisiting the relaxation equations describing nonequilibrium mass transfer in the transonic homogeneous flashing flow models. Postępy w badaniach wymiany ciepła i masy: Monografia Konferencyjna XVI Sympozjum Wymiany Ciepła I Masy. 2022; 113-123. Białystok. Oficyna Wydawnicza Politechniki Białostockiej. ISBN 978-83-67185-30-1. https://doi.org/10.24427/978-83-67185-30-1_13
DOI: https://doi.org/10.2478/ama-2024-0056 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 526 - 535
Submitted on: Dec 11, 2023
Accepted on: Feb 21, 2024
Published on: Aug 1, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Wojciech Angielczyk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.