References
- Saha P. Review of two-phase steam-water critical flow models with emphasis on thermal nonequilibrium.1977; NUREG/CR-0417. United States.
- Richter HJ. Separated two-phase flow model: application to critical two-phase flow. International Journal of Multiphase Flow. 1983; 9(5): 511-530. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(83)90015-0
- Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. 1975. Second Edition. Springer.
- Staedtke H. Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena and Related Numerical Methods. Wiley-VCH. 1st edition (October 6, 2006).
- Baer MR, Nunziato, JW. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow. 1986;12: 861–889.
- Zhang C, Menshov I, Wang L, Shen Z. Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. Journal of Computational Physics. 2022; 466: 111356. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2022.111356
- Bdzil JB, Menikoff R, Kapila AK, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Physics of fluids. 1999; 11: 2; 378-402. https://doi.org/10.1063/1.869887
- Kapila AK, Menikoff R, Bdzil JB, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Physics of fluids. 2001;13(10):3002-3024. https://doi.org/10.1063/1.1398042
- Pelanti M. Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer. International Journal of Multiphase Flow. 2022;153:104097. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104097
- Saurel R, Petitpas F, Abgrall R. Modelling phase transition in meta-stable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics. 2008;60:313–350. https://doi.org/10.1017/S0022112008002061
- LeMartelot S, Nkonga B, Saurel R, Liquid and liquid-gas flows at all speeds. Journal of Computational Physics 255. 2013;53–82. https://doi.org/10.1016/j.jcp.2013.08.001
- Lund H, Aursand P. Two-Phase Flow of CO2 with Phase Transfer. Energy Procedia. 2012;23:246-255. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2012.06.034
- Le Martelot S, Saurel R, Nkonga B. Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multi-phase Flow. 2014;66:62-78. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.010
- Saurel R, Boivin P, Le Métayer O. A general formulation for cavitating, boiling and evaporating flows. Computers & Fluids. 2016; 128: 53-64, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2016.01.004
- Chiapolino A, Boivin P, Saurel. A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Computers & Fluids. 2017; 150: 31-45. ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2017.03.022
- Demou AD, Scapin N, Pelanti M, Brandt L. A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer. Journal of Computational Physics. 2022;448:110730. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110730
- Stewart HB, Wendroff B. Two-phase flow: models and methods. Journal of Computational Physics. 1984;56(3):363-409.
- Bilicki Z, Kestin J. Physical aspects of the relaxation model in two-phase flow. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1990;428(1875):379-397.
- Downar-Zapolski P, Bilicki Z, Bolle L, Franco J. The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow. 1996;22(3): 473-483. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(95)00078-X
- Atkins P, de Paula J. Physical Chemistry. 2006; 8th ed. W.H. Freeman: 805-7. ISBN 0-7167-8759-8
- Einstein A. Schallausbreitung in teilweise dissoziierten Gasen [Sound propagation in partly dissociated gases]: 380-385.
- Mandelshtam, LI, Leontovich EM. A theory of sound absorption in liquids. Zh. Exp. Teor Fiz. 1937;7:434-449 (in Russian).
- Bauer EG, Houdayer, GR, Sureau HM. A non-equilibrium axial flow model in application to loss-of-coolant accident analysis. The CYSTERE system code. OECD/NEA Specialist Meeting on Transient Two-phase Flow. 1976. Toronto Canada.
- Angielczyk W, Bartosiewicz Y, Butrymowicz D, Seynhaeve J-M. 1-D modelling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. International Refrigeration and Air Conditioning Conference. 2010. Purdue USA.
- Haida M, Smolka J, Hafner A, Palacz M, Banasiak K, Nowak AJ. Modified homogeneous relaxation model for the R744 transcritical flow in a two-phase ejector, International Journal of Refrigeration. 2018;85:314-333. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2017.10.010
- Feburie V, Giot M, Granger S, Seynhaeve J. A model for choked flow through cracks with inlet subcooling. International Journal of Multi-phase Flow. 1993;19(4):541–562. https://doi:10.1016/0301-9322(93)90087-b
- Attou A, Seynhaeve JM. Steady-state critical two-phase flashing flow with possible multiple choking phenomenon. Part 1: physical modelling and numerical procedure. Journal of Loss Prevention in the Industries. 1999;12:335-345. https://doi.org/10.1016/S0950-4230(98)00017-5
- De Lorenzo M, Lafon P, Seynhaeve JM, Bartosiewicz Y. Benchmark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. International Journal of Multiphase Flow. 2017;92:112-130. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004
- Angielczyk W, Bartosiewicz Y, Butrymowicz D. Development of Delayed Equilibrium Model for CO2 convergent-divergent nozzle transonic flashing flow. International Journal of Multiphase Flow. 2020;131:103351. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103351
- Tammone C, Romei A, Persico G, Haglind F. Extension of the delayed equilibrium model to flashing flows of organic fluids in converging-diverging nozzles. International Journal of Multiphase Flow. 2024; 171:104661. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104661
- Ambroso A, Hérard J-M, Hurisse O. A method to couple HEM and HRM two-phase flow models. Computers & Fluids. 2009;38(4):738-756, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2008.04.016
- Palacz M, Haida M, Smolka J, Nowak AJ, Banasiak K, Hafner A. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems. Applied Thermal Engineering. 2017;115:160-169. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2016.12.122
- James F, Mathis H. A relaxation model for liquid-vapor phase change with metastability. 2015 arXiv preprint arXiv:1507.06333. https://doi.org/10.48550/arXiv.1507.06333
- De Lorenzo M, Lafon Ph, Pelanti M. A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures. Journal of Computational Physics. 2019;379: 279-308. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.12.002
- De Lorenzo M, Lafon Ph, Pelanti M, Pantano A, Di Matteo M, Bartosiewicz Y, Seynhaeve JM. A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressurizations. Nuclear Engineering and Design. 2021;371:110954. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2020.110954
- Ward CA. The rate of gas absorption at a liquid interface. The Journal of Chemical Physics. 1977; 67(1): 229-235. https://doi.org/10.1063/1.434547
- Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. The Journal of Chemical Physics. 1982;76(11):5599-5605. https://doi.org/10.1063/1.442865
- Ward CA, Fang G. Expression for predicting liquid evaporation flux: Statistical rate theory approach. Physical Review. 1999;59(1): 429. https://doi.org/10.1103/PhysRevE.59.429
- Schrage RW. A theoretical study of interphase mass transfer. 1953. Columbia University Press. https://doi.org/10.7312/schr90162
- Banasiak K, Hafner A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. International Journal of Thermal Sciences. 2011;50(11):2235-2247. ISSN 1290-0729. https://doi.org/10.1016/j.ijthermalsci.2011.06.007
- Bodys J, Smolka J, Palacz M, HaidaM, Banasiak K. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure. International Journal of Refrigeration. 2020;114:32-46. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2020.02.015
- Bodys J, Smolka J, Palacz M, Haida M, Banasiak K, Nowak AJ. Effect of turbulence models and cavitation intensity on the motive and suction nozzle mass flow rate prediction during a non-equilibrium expansion process in the CO2 ejector. Applied Thermal Engineering. 2022;201:117743, ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2021.117743
- Bilicki Z, Dafermos C, Kestin J, Majda G, Zeng DL. Trajectories and singular points in steady-state models of two-phase flows. International journal of multiphase flow. 1987; 13(4): 511-533.
- De Sterck H. Critical point analysis of transonic flow profiles with heat conduction. SIAM Journal on Applied Dynamical Systems. 2007; 6(3): 645-662. https://doi.org/10.1137/060677458
- Angielczyk W, Bartosiewicz Y, Butrymowicz, Seynhaeve, JM. 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. International Refrigeration and Air Conditioning Conference. 2010.
- Angielczyk W, Śmierciew K, Butrymowicz D. Application of a fast transonic trajectory determination approach in 1-D modelling of steady-state two-phase carbon dioxide flow. In E3S Web of Conferences. 2019; 128: 06005, EDP Sciences. https://doi.org/10.1051/e3sconf/201912806005
- Angielczyk W, Seynhaeve JM, Gagan J, Bartosiewicz Y, Butrymowicz D. Prediction of critical mass rate of flashing carbon dioxide flow in convergent-divergent nozzle. Chemical Engineering and Processing - Process Intensification. 2019; 143: 107599. ISSN 0255-2701. https://doi.org/10.1016/j.cep.2019.107599
- Angielczyk W, Butrymowicz D. Revisiting the relaxation equations describing nonequilibrium mass transfer in the transonic homogeneous flashing flow models. Postępy w badaniach wymiany ciepła i masy: Monografia Konferencyjna XVI Sympozjum Wymiany Ciepła I Masy. 2022; 113-123. Białystok. Oficyna Wydawnicza Politechniki Białostockiej. ISBN 978-83-67185-30-1. https://doi.org/10.24427/978-83-67185-30-1_13