Have a personal or library account? Click to login
Comparing the Heating Rate of the Proximal Phalanx of the Fingers in Rheumatoid Arthritis and Healthy Subjects Cover

Comparing the Heating Rate of the Proximal Phalanx of the Fingers in Rheumatoid Arthritis and Healthy Subjects

Open Access
|Jul 2024

References

  1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19. https://doi.org/10.1056/NEJMra1004965
  2. Branco JHL, Branco RLL, Siqueira TC, de Souza LC, Dalago KMS, Andrade A. Clinical applicability of infrared thermography in rheumatic diseases: A systematic review. J Therm Biol. 2022; 104:103172. https://doi.org/10.1016/j.jtherbio.2021.103172
  3. Sanchez BM, Lesch M, Brammer D, Bove SE, Thiel M, Kilgore KS. Use of a portable thermal imaging unit as a rapid, quantitative method of evaluating inflammation and experimental arthritis. J Pharmacol Toxicol Methods. 2008;57(3):169-75. https://doi.org/10.1016/j.vascn.2008.01.003
  4. Kow J, Tan YK. An update on thermal imaging in rheumatoid arthritis. Joint Bone Spine. 2023;90(3):105496. https://doi.org/10.1016/j.jbspin.2022.105496
  5. Pauk J, Wasilewska A., Ihnatouski M. Infrared thermography sensor for disease activity detection in rheumatoid arthritis patients. Sensors. 2019;19(16):3444. https://doi.org/10.3390/s19163444
  6. Pauk J, Ihnatouski M, Wasilewska A. Detection of inflammation from finger temperature profile in rheumatoid arthritis. Med Biol Eng Comput. 2019;57(12):2629-2639. https://doi.org/10.1007/s11517-019-02055-1.
  7. Morales-Ivorra I, Narváez J, Gómez-Vaquero C, Moragues C, Nolla JM, Narváez JA, Marín-López MA. A Thermographic Disease Activity Index for remote assessment of rheumatoid arthritis. RMD Open. 2022;8(2):e002615. https://doi.org/10.1136/rmdopen-2022-002615
  8. Morales-Ivorra I, Narváez J, Gómez-Vaquero C, Moragues C, Nolla JM, Narváez JA, Marín-López MA. Assessment of inflammation in patients with rheumatoid arthritis using thermography and machine learning: a fast and automated technique. RMD Open. 2022;8(2): e002458. https://doi.org/10.1136/rmdopen-2022-002458
  9. Bardhan S, Bhowmik MK. 2-Stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation. Australas Phys Eng Sci Med. 2019;42(1):259-277. https://doi.org/10.1007/s13246-019-00726-9
  10. Ahalya RK, Snekhalatha U, Dhanraj VJ. Automated segmentation and classification of hand thermal images in rheumatoid arthritis using machine learning algorithms: A comparison with quantum machine learning technique. Therm Biol. 2023;111:103404. https://doi.org/10.1016/j.jtherbio.2022.103404
  11. Snekhalatha U, Anburajan M, Sowmiya V, Venkatraman B, Menaka M: Automated hand thermal image segmentation and feature extraction in the evaluation of rheumatoid arthritis, Proc Inst Mech Eng H 2015;229(4):319-31. https://doi.org/10.1177/0954411915580809
  12. Tripoliti EE, Fotiadis D, Argyropoulou M. Automated segmentation and quantification of inflammatory tissue of the hand in rheumatoid arthritis patients using magnetic resonance imaging data. Artif Intell Med 2007;40(2):65-85. https://doi.org/10.1016/j.artmed.2007.02.003
  13. Venerito V, Angelini O, Cazzato G, Lopalco G, Maiorano E, Cimmino A, et al. A convolutional neural network with transfer learning for automatic discrimination between low and high-grade synovitis: a pilot study. Intern Emerg Med. 2021;16:1457–65. https://doi.org/10.1007/s11739-020-02583-x
  14. Folle L, Meinderink T, Simon D, Liphardt AM, Krönke G, et al. Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density. Sci Rep. 2021; 11:9697–706. https://doi.org/10.1038/s41598-021-89111-9
  15. Norgeot B, Glicksberg BS, Trupin L, Lituiev D, Gianfrancesco M, Oskotsky B, et al. Assessment of a deep learning model based on electronic health record data to forecast clinical outcomes in patients with rheumatoid arthritis. JAMA Netw Open. 2019;2:e190606. https://doi.org/10.1001/jamanetworkopen.2019.0606
  16. Fukae J, Isobe M, Hattori T, Fujieda Y, Kono M, Abe N, et al. Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis. Sci Rep. 2020;10:5648. https://doi.org/10.1038/s41598-020-62634-3
  17. Üreten K, Erbay H, Maraş HH. Detection of rheumatoid arthritis from hand radiographs using a convolutional neural network. Clin Rheumatol. 2020;39:969–74. https://doi.org/10.1007/s10067-019-04487-4
  18. Christensen ABH, Just SA, Andersen JKH, Savarimuthu TR. Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients. Ann Rheum Dis. 2020;79:1189–93. https://doi.org/10.1136/annrheumdis-2019-216636
  19. Tan YK, Hong C, Li H, Allen JC Jr, Thumboo J. Thermography in rheumatoid arthritis: a comparison with ultrasonography and clinical joint assessment. Clin Radiol. 2020;75(12):963.e17-963.e22. https://doi.org/10.1016/j.crad.2020.08.017
  20. Umapathy S, Thulasi R, Gupta N, Sivanadhan S. Thermography and colour Doppler ultrasound: a potential complementary diagnostic tool in evaluation of rheumatoid arthritis in the knee region. Biomed Tech (Berl) 2020;26;65(3):289-299. https://doi.org/10.1515/bmt-2019-0051
  21. Mountz JM, Alavi A, Mountz JD. Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(12):719-28. https://doi.org/10.1038/nrrheum.2012.148
  22. Tan YK, Hong C, Li H, Allen JC Jr, Thumboo J. A novel use of combined thermal and ultrasound imaging in detecting joint inflammation in rheumatoid arthritis. Eur J Radiol. 2021;134:109421. https://doi.org/10.1016/j.ejrad.2020.109421
  23. Dreher R, Müller K, Grebe SF, Altaras J, Federlin K. [Scintigraphic, thermographic and radiographic findings in rheumatoid arthritis (RA) and their value for diagnosis and therapy]. Verh Dtsch Ges Inn Med. 1978;(84):1492-6.
  24. Tegelberg A, Kopp S. Skin surface temperature over the temporomandibular and metacarpophalangeal joints in individuals with rheumatoid arthritis. Acta Odontol Scand. 1987;45(5):329-36. https://doi.org/10.3109/00016358709096355
  25. Gatt A, Mercieca C, Borg A, Grech A, Camilleri L, Gatt C, Chockalingam N, Formosa C. A comparison of thermographic characteristics of the hands and wrists of rheumatoid arthritis patients and healthy controls. Sci Rep. 2019;25;9(1):17204. https://doi.org/10.1038/s41598-019-53598-0
  26. Fischer M, Mielke H, Glaefke S, Deicher H. Generalized vasculopathy and finger blood flow abnormalities in rheumatoid arthritis. J Rheumatol. 1984;11(1):33-7.
  27. Anjos A, Leite R, Cancela ML, Shahbazkia H. MAQ – A bioinformatics tool for automatic macroarray analysis. International Journal of Computer Applications 2010;4(3). https://doi.org/10.5120/843-1066
  28. Rusch D, Follmann M, Boss B, Neeck G. Dynamic thermography of the knee joints in rheumatoid arthritis (RA) in the course of the first therapy of the patient with methylprednisolone. Z Rheumatol. 2000;59(2):II/131-5. https://doi.org/10.1007/s003930070009
  29. Nowakowski A. Problems of active dynamic thermography measurement standarization in medicine. Pomiary Automatyka Robotyka 2021;3: 51-56. https://doi.org/10.14313/PAR_241/51
DOI: https://doi.org/10.2478/ama-2024-0052 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 490 - 495
Submitted on: Jul 19, 2023
Accepted on: Oct 27, 2023
Published on: Jul 25, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mikhail Ihnatouski, Jolanta Pauk, Kristina Daunoraviciene, Jurgita Ziziene, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.