Have a personal or library account? Click to login
Predictive Analysis on the Influence of Al2O3 and CuO Nanoparticles on the Thermal Conductivity of R1234yf-Based Refrigerants Cover

Predictive Analysis on the Influence of Al2O3 and CuO Nanoparticles on the Thermal Conductivity of R1234yf-Based Refrigerants

Open Access
|Jul 2024

References

  1. Choi S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. In: 1995 International mechanical engineering congress and exhibition. San Francisco. CA (United States). 1995.
  2. Shukla RK, Dhir VK. Effect of Brownian motion on thermal conductivity of nanofluids. Journal of Heat Transfer [Internet]. 2008 Mar 18;130(4). Available from: https://doi.org/10.1115/1.2818768
  3. Jang SP, Choi SJ. Effects of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer [Internet]. 2006 Aug 2;129(5):617–23. Available from: https://doi.org/10.1115/1.2712475
  4. Irfan M. Energy transport phenomenon via Joule heating and aspects of Arrhenius activation energy in Maxwell nanofluid. Waves in Random and Complex Media [Internet]. 2023 Apr 12;1–16. Available from: https://doi.org/10.1080/17455030.2023.2196348
  5. Irfan M. Influence of thermophoretic diffusion of nanoparticles with Joule heating in flow of Maxwell nanofluid. Numerical Methods for Partial Differential Equations [Internet]. 2022 Sep 23;39(2):1030–41. Available from: https://doi.org/10.1002/num.22920
  6. Rafiq K, Irfan M, Khan MA, Anwar MS, Khan W. Arrhenius activation energy theory in radiative flow of Maxwell nanofluid. Physica Scripta [Internet]. 2021 Jan 28;96(4):045002. Available from: https://doi.org/10.1088/1402-4896/abd903
  7. Irfan M, Khan M, Khan WA. Heat sink/source and chemical reaction in stagnation point flow of Maxwell nanofluid. Applied Physics A [Internet]. 2020 Oct 27;126(11). Available from: https://doi.org/10.1007/s00339-020-04051-x
  8. Irfan. Study of Brownian motion and thermophoretic diffusion on non-linear mixed convection flow of Carreau nanofluid subject to variable properties. Surfaces and Interfaces. 2021 Apr;23(100926).
  9. Irfan M, Anwar MS, Kebail I, Khan WA. Thermal study on the performance of Joule heating and Sour-Dufour influence on nonlinear mixed convection radiative flow of Carreau nanofluid. Tribology International [Internet]. 2023 Oct 1;188:108789. Available from: https://doi.org/10.1016/j.triboint.2023.108789
  10. Ali U, Irfan M. Thermal aspects of multiple slip and Joule heating in a Casson fluid with viscous dissipation and thermo-solutal convective conditions. International Journal of Modern Physics B [Internet]. 2022 Sep 22;37(05). Available from: https://doi.org/10.1142/s0217979223500431
  11. Irfan M, Rafiq K, Khan M, Waqas M, Anwar MS. Theoretical analysis of new mass flux theory and Arrhenius activation energy in Carreau nanofluid with magnetic influence. International Communications in Heat and Mass Transfer [Internet]. 2021 Jan 1;120:105051. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2020.105051
  12. Ali U, Irfan M, Akbar NS, Rehman KU, Shatanawi W. Dynamics of Soret–Dufour effects and thermal aspects of Joule heating in multiple slips Casson–Williamson nanofluid. International Journal of Modern Physics B [Internet]. 2023 Jun 9. Available from: https://doi.org/10.1142/s0217979224502060
  13. Irfan M, Aftab R, Khan M. Thermal performance of Joule heating in Oldroyd-B nanomaterials considering thermal-solutal convective conditions. Chinese Journal of Physics [Internet]. 2021 Jun 1;71:444–57. Available from: https://doi.org/10.1016/j.cjph.2021.03.010
  14. Irfan M, Khan W, Pasha AA, Alam MI, Islam N, Zubair M. Significance of non-Fourier heat flux on ferromagnetic Powell-Eyring fluid subject to cubic autocatalysis kind of chemical reaction. International Communications in Heat and Mass Transfer [Internet]. 2022 Nov 1;138:106374. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2022.106374
  15. Jiang W, Ding G, Peng H, Gao Y, Wang K. Experimental and model research on nanorefrigerant thermal conductivity. Science and Technology for the Built Environment [Internet]. 2009 May 1;15(3): 651–69. Available from: https://doi.org/10.1080/10789669.2009.10390855
  16. Mahbubul IM, Saadah AR, Saidur R, Khairul MA, Kamyar A. Thermal performance analysis of Al2O3/R-134a nanorefrigerant. International Journal of Heat and Mass Transfer [Internet]. 2015 Jun 1;85:1034–40. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.038
  17. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences [Internet]. 2009 Jun 1;48(6):1108–15. Available from: https://doi.org/10.1016/j.ijthermalsci.2008.11.012
  18. Alawi OA, Sidik NAC. Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant. International Communications in Heat and Mass Transfer [Internet]. 2014 Nov 1;58:79–84. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.038
  19. Mahbubul IM, Fadhilah SA, Saidur R, Leong KY, Afifi AM. Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. International Journal of Heat and Mass Transfer [Internet]. 2013 Jan 1;57(1):100–8. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.007
  20. Mahbubul IM, Saidur R, Afifi AM. Thermal Conductivity, Viscosity and Density of R141b Refrigerant based Nanofluid. Procedia Engineering [Internet]. 2013 Jan 1;56:310–5. Available from: https://doi.org/10.1016/j.proeng.2013.03.124
  21. Mahbubul IM, Saidur R, Afifi AM. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass Transfer [Internet]. 2013 Apr 1;43:100–4. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2013.02.004
  22. Alawi OA, Sidik NAC. Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants. International Communications in Heat and Mass Transfer [Internet]. 2014 Nov 1;58:125–31. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.033
  23. Alawi OA, Sidik NAC. The effect of temperature and particles concentration on the determination of thermo and physical properties of SWCNT-nanorefrigerant. International Communications in Heat and Mass Transfer [Internet]. 2015 Oct 1;67:8–13. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2015.06.014
  24. Al-Hajaj Z, Bayomy AM, Saghir MZ. A comparative study on best configuration for heat enhancement using nanofluid. International Journal of Thermofluids [Internet]. 2020 Nov 1;7–8:100041. Available from: https://doi.org/10.1016/j.ijft.2020.100041
  25. Plant, Saghir. Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. International Journal of Thermofluids. 2021 Feb;9(100055).
  26. Avsec J, Marčič M. The calculation of equilibrium and nonequilibrium thermophysical properties [Internet]. 35th AIAA Thermophysics Conference. 2001. Available from: https://doi.org/10.2514/6.2001-2766
  27. Avsec J, Marčič M. The calculation of the thermophysical properties for pure refrigerants and their mixtures [Internet]. 33rd Thermophysics Conference. 1999. Available from: https://doi.org/10.2514/6.1999-3676
  28. Yılmaz F, Özdemir AF, Şahin AŞ, Selbaş R. Prediction of thermodynamic and thermophysical properties of carbon dioxide. Journal of Thermophysics and Heat Transfer [Internet]. 2014 Jul 1;28(3): 491–8. Available from: https://doi.org/10.2514/1.t4042
  29. Wang KJ, Ding GL, Jiang WT. Development of nanorefrigerant and its rudiment property. In 8th International Symposium on Fluid Control, Measurement and Visualization. Chengdu. China: China Aerodynamics Research Society 2005 Aug.
  30. Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management [Internet]. 2011 Jan 1;52(1):733–7. Available from: https://doi.org/10.1016/j.enconman.2010.07.052
  31. Wang, Hao, Xie, Li. A refrigerating system using HFC134A and mineral lubricant appended with N-TiO2 (R) as working fluids. In: Heating, ventilating and air conditioning. ISHVAC 2003. Tsinghua University Press. 2003.
  32. Wang, Shiromoto, Mizogami. Experiment study on the effect of nanoscale particle on the condensation process. In: Proceeding of the 22nd International Congress of Refrigeration. Beijing. China. 2007.
  33. Bi S, Song L, Zhang L. Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering [Internet]. 2008 Oct 1;28(14–15):1834–43. Available from: https://doi.org/10.1016/j.applthermaleng.2007.11.018
  34. Alawi OA, Salih JM, Mallah AR. Thermo-physical properties effectiveness on the coefficient of performance of Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass Transfer [Internet]. 2019 Apr 1;103:54–61. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2019.02.011
  35. Yu W, Choi SJ. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research [Internet]. 2003 Apr 1;5(1/2):167–71. Available from: https://doi.org/10.1023/a:1024438603801
  36. Sitprasert C, Dechaumphai P, Juntasaro V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. Journal of Nanoparticle Research [Internet]. 2008 Nov 4;11(6):1465–76. Available from: https://doi.org/10.1007/s11051-008-9535-4
  37. Leong KC, Yang C, Murshed SMS. A model for the thermal conductivity of nanofluids – the effect of interfacial layer. Journal of Nanoparticle Research [Internet]. 2006 Apr 1;8(2):245–54. Available from: https://doi.org/10.1007/s11051-005-9018-9
  38. Patil MS, Kim SC, Seo JH, Lee M. Review of the Thermo-Physical Properties and Performance Characteristics of a refrigeration system using Refrigerant-Based Nanofluids. Energies [Internet]. 2015 Dec 31;9(1):22. Available from: https://doi.org/10.3390/en9010022
  39. Zawawi NNM, Azmi WH, Redhwan A a. M, Sharif MZ, Sharma KV. Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system. International Journal of Refrigeration [Internet]. 2017 Aug 1;80:1–10. Available from: https://doi.org/10.1016/j.ijrefrig.2017.04.024
  40. Yang L, Hu Y. Toward TIO2 Nanofluids—Part 2: Applications and Challenges. Nanoscale Research Letters [Internet]. 2017 Jul 6;12(1). Available from: https://doi.org/10.1186/s11671-017-2185-7
  41. Mohammed AHSMMMS Karam Hashim. Energy observation technique for vapour absorption using nano fluid refrigeration [Internet]. 2020. Available from: http://sersc.org/journals/index.php/IJAST/article/view/22608
  42. Wang X, Amrane K, Johnson P. Low Global Warming Potential (GWP) Alternative Refrigerants Evaluation Program (Low-GWP AREP) [Internet]. Purdue e-Pubs. Available from: http://docs.lib.purdue.edu/iracc/1222
  43. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science [Internet]. 2010 Feb 1;34(2):210–6. Available from: https://doi.org/10.1016/j.expthermflusci.2009.10.022
  44. Akhavan-Behabadi MA, Sadoughi M, Darzi M, Fakoor-Pakdaman M. Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation. Experimental Thermal and Fluid Science [Internet]. 2015 Sep 1;66:46–52. Available from: https://doi.org/10.1016/j.expthermflusci.2015.02.027
  45. Wang CC. An overview for the heat transfer performance of HFO-1234yf. Renewable & Sustainable Energy Reviews [Internet]. 2013 Mar 1;19:444–53. Available from: https://doi.org/10.1016/j.rser.2012.11.049
  46. Maxwell JC. A treatise on electricity and magnetism. Journal of the Franklin Institute [Internet]. 1954 Dec 1;258(6):534. Available from: https://doi.org/10.1016/0016-0032(54)90053-8
  47. Hamilton R, Crosser OK. Thermal conductivity of heterogeneous Two-Component systems. Industrial & Engineering Chemistry Fundamentals [Internet]. 1962 Aug 1;1(3):187–91. Available from: https://doi.org/10.1021/i160003a005
  48. Sharif MZ, Azmi WH, Redhwan A a. M, Mamat R. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. International Journal of Refrigeration [Internet]. 2016 Oct 1;70:93–102. Available from: https://doi.org/10.1016/j.ijrefrig.2016.06.025
  49. Stacy SC, Zhang X, Pantoya ML, Weeks BL. The effects of density on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles. International Journal of Heat and Mass Transfer [Internet]. 2014 Jun 1;73:595–9. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.050
  50. Jwo, Jeng, Chang, Teng. Experimental study on thermal conductivity of lubricant containing nanoparticles. Reviews on Advanced Materials Science. 2008;18:660–6.
DOI: https://doi.org/10.2478/ama-2024-0050 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 474 - 482
Submitted on: Jun 28, 2023
Accepted on: Dec 30, 2023
Published on: Jul 25, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Baiju S. Bibin, Panitapu Bhramara, Arkadiusz Mystkowski, Edison Gundabattini, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.