Have a personal or library account? Click to login
Modelling of an Influence of Liquid Velocity Above the Needle on the Bubble Departures Process Cover

Modelling of an Influence of Liquid Velocity Above the Needle on the Bubble Departures Process

By: Paweł Dzienis  
Open Access
|Jul 2024

References

  1. Dzienis P, Mosdorf R. Liquid pressure fluctuations around a needle during bubble departures. Meccanica. 2023;58:1307-1313.
  2. Dzienis P, Golak K, Konopka M, Mosdorf R, Baziene K, Gargasas J. A hydrodynamic interaction between bubbles and gas supply system during gas bubble departures in liquids: an experimental study. Scientific Reports. 2023;13:17979.
  3. He Y, Zhang T, Lv L, Tang W, Wang Y, Zhou J, Tang S. Application of microbubbles in chemistry, wastewater treatment, medicine, cosmetics, and agriculture: a review. Environmental Chemical Letters.2023;21:3245–3271.
  4. Le TH, Phan AHT, Le KCM, Phan TDU, Nguyen KT.Utilizing polymer-conjugate albumin-based ultrafine gas bubbles in combination with ultra-high frequency radiations in drug transportation and delivery. RSC Advances.2021;11(55):34440–34448.
  5. Leifer I, Tang D. The acoustic signature of marine seep bubbles. The Journal of the Acoustical Society of America.2007;121:35–40.
  6. Boufadel MC, Socolofsky S, Katz J, Yang D, Daskiran C, Dewar W. A review on multiphase underwater jets and plumes: Droplets, hydrodynamics, and chemistry, Reviews of Geophysics. 2023; 58:1–40.
  7. Abdulmouti H. Bubbly two-phase flow: III- applications, American Journal of Fluid Dynamics.2022;12(1):16–119.
  8. Gevod VS, Borisov IA. Influence of air bubble flow structure on the rate of water purification by the bubble-film extraction method, Water Supply 2019;19(8):2298–2308.
  9. Budzyński P, Gwiazda A, Dziubiński M. Intensification of mass transfer in a pulsed bubble column, Chemical Engineering Processing & Process Intensification. 2017;112:18-30.
  10. Suwartha N, Syamzida D, Priadi CR, Moersidik SS, Ali F. Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes. Heliyon.2020;6(4):e03748.
  11. Herrmann-Heber R, Reinecke SF, Hampel U. Dynamic aeration for improved oxygen mass transfer in the wastewater treatment process. Chemical Engineering Journal.2020;386:122068.
  12. Pan F, Mu L, He Y, Wang C, Zhou S. A thermal-hydrodynamic coupling method for simulating the interplay between bubble departure and wall temperature variation in nucleate boiling, Journal of Hydrodynamics. 2021; 33: 243–258.
  13. Yuan J, Ye X, Shan Y. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling. International Journal of Multiphase Flow 2021;142:103701.
  14. Pan F, Mu L, He Y. Wang C. Numerical study on the activation of nucleation sites and bubble interactions in twin-bubble nucleate boiling, Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science. 2022;236(12). doi.org/10.1177/09544062211065987
  15. Stanovsky P, Ruzicka M, Martins A, Teixeira J. Meniscus dynamics in bubble formation: A parametric study. Chemical Engineering Science. 2011;66:3258-3267.
  16. Dzienis P, Zaborowska I, Mosdorf R. JRP analysis of synchronization loss between signals recording during bubble departures. Nonlinear Dynamics. 2022;108:433–444.
  17. Mohseni E, Reinecke SF, Hampel U. Controlled bubble formation from an orifice through harmonic gas pressure modulation. Chemical Engineering Journal 2023. doi.org/10.1016/j.cej.2023.143953
  18. Cano-Lozano JC, Bolaños-Jiménez R, Gutiérrez-Montes C. Martínez-Bazán C. On the bubble formation under mixed injection conditions from a vertical needle, International Journal of Multiphase Flows. 2017; 97:23–32.
  19. Dzienis P, Mosdorf R, Wyszkowski T. The dynamics of liquid movement inside the nozzle during the bubble departures for low air volume flow rate. Acta Mechanica et Automatica.2012;6(3):31–36.
  20. Augustyniak J, Perkowski DM, Mosdorf R. Measurement of multifractal character of bubble paths using image analysis, International Communication in Heat and Mass Transfer 2020;117: 104701.
  21. Zhang L, Shoji M. Aperiodic bubble formation from a submerged orifice, Chemical Engineering Science. 2001; 56: 5371–5381.
  22. Snabre P, Magnifotcham F. Formation and rise of a bubble stream in viscous liquid The European Physical Journal B. 1997; 4: 369–377.
  23. Feng X, Kunugi T, Qin S, Wu D. Flowrate effects on the lateral coalescence of two growing bubbles. The Canadian Journal of Chemical Engineering. 2023. doi.org/10.1002/cjce.24976
  24. Yuan J, Ye X, Shan Y. Modelling of double bubbles coalescence behaviour on different wettability walls using LBM method, International Journal of Thermal Sciences. 2021; 168: 107037.
  25. Dzienis P, Mosdorf R, Wyszkowski T. A hydrodynamic criterion of alternative bubble departures, Thermal Science. 2021; 25(1B): 553-565.
  26. Capponi A, Llewellin EW. Experimental observations of bubbling regimes at in-line multi-orifice bubblers. International Journal of Multiphase Flow. 2019; 114: 66–81.
  27. Padash A, Chen B, Boyce CM. Characterizing alternating bubbles emerging from two interacting vertical gas jets in a liquid. Chemical Engineering Science.2022; 248 Part B: 117199.
  28. Kazakis NA, Mouza AA, Paras SV. Coalescence during bubble formation at two neighbouring pores: an experimental study in microscopic scale, Chemical Engineering Science. 2008;63(21): 5160–5178.
  29. Legendre D, Magnaudet J, Mougin G. Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid, Journal of Fluid Mechanics. 2003; 497: 133–166.
  30. Sanada T, Sato A, Shirota MT, Watanabe M. Motion and coalescence of a pair of bubbles rising side by side. Chemical Engineering Science. 2009; 64: 2659–2671.
  31. Ruzicka MC, Bunganic R, Drahoš J. Meniscus dynamics in bubble formation. Part II: Model. Chemical Engineering Research and Design. 2009; 87: 1357-1365.
  32. Dzienis P, Mosdorf R. Stability of periodic bubble departures at a low frequency. Chemical Engineering Science. 2014; 109: 171-182.
  33. Ravisankar M, Garcidueñas Correa A, Su Y, Zenit R. Hydrodynamic interaction of a bubble pair in viscoelastic shear-thinning fluids. Journal of Non-Newtonian Fluid Mechanics. 2022;309:104912.
  34. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007;438: 237–329.
  35. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica – D. 1983;9:189–208.
  36. Sen AK, Litak G, Taccani R, Radu R. Chaotic vibrations in a regenerative cutting process, Chaos Solitons Fractals. 2008;38:886–893.
  37. Schuster HG. Deterministic Chaos. An Introduction. PWN. Warszawa 1993 (in Polish).
  38. Liebert W, Schuster HG. Proper choice of the time delay for the analysis of chaotic time series. Physics Letters A. 1989;142:107–111
DOI: https://doi.org/10.2478/ama-2024-0044 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 403 - 408
Submitted on: Jan 26, 2024
Accepted on: May 24, 2024
Published on: Jul 17, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Paweł Dzienis, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.