Have a personal or library account? Click to login
Numerical Modelling and Simulation of the Shear-Slitting Process of Electrical Steels Cover

Numerical Modelling and Simulation of the Shear-Slitting Process of Electrical Steels

Open Access
|Jun 2024

References

  1. Jin SY, Pramanik A, Basak AK et al. Burr formation and its treatments—a review. International J of Adv Man Tech. 2020; 107: 2189–2210. https://doi.org/10.1007/s00170-020-05203-2
  2. Ghadbeigi H, Al-Rubaye A, Robinson FCJ et al. Blanking induced damage in thin 3.2% silicon steel sheets. Prod Eng. 2020; 14: 53–64. https://doi.org/10.1007/s11740-019-00931-1
  3. Arslan Y, Özdemir A. Punch structure, punch wear and cut profiles of AISI304 stainless steel sheet blanks manufactured using cryogenically treated AISI D3 tool steel punches. Int J of Adv Man Tech. 2016; 87: 587–599. https://doi.org/10.1007/s00170-016-8515-6
  4. Falconnet E, Makich H, Chambert J, Monteil G, Picart P. Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet. Wear. 2012; 296: 598-606. https://doi.org/10.1016/j.wear.2012.07.031
  5. Kurosaki Y, Mogi H, Fujii H. Importance of punching and workability in non-oriented electrical steel sheets. J of Mag and Magn Mat. 2008; 320: 2474–2480. https://doi.org/10.1016/j.jmmm.2008.04.073
  6. Lewis N, Anderson P, Hall J, Gao Y. Power loss models in punched non-oriented electrical steel rings. IEEE Trans on Mag. 2016; 52 (5): 1-4. https://doi.org/10.1109/TMAG.2016.2530304
  7. Liu Y, Wang Ch, Han H, Shan D, Guo B. Investigation on effect of ultrasonic vibration on micro-blanking process of copper foil. Int J of Adv Man Tech. 2017; 93: 2243-2249. https://doi.org/10.1007/s00170-017-0684-4
  8. Boehm L, Hartmann C, Gilch I, Stoecker A, Kawalla R, Wei X, Hirt G, Heller M, Korte-Kerzel S, Leuning N et al. Grain size influence on the magnetic property deterioration of blanked non-oriented electrical steels. Materials. 2021; 14: 7055. https://doi.org/10.3390/ma14227055
  9. Wilczyński W. Wpływ technologii na właściwości magnetyczne rdzeni maszyn elektrycznych. IEI Warszawa 2003 (in Polish).
  10. Miyagi D, Miki K, Nakano M, Takahashi N. Influence of compressive stress on magnetic properties of laminated electrical steel sheets. IEEE Trans of Mag. 2010; 46: 318-321. https://doi.org/10.1109/TMAG.2009.2033550.
  11. Naumoski H, Riedmüller B, Minkow A. Herr U. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. J of Mag and Magn Mat. 2015; 392: 126–133.https://doi.org/10.1016/j.jmmm.2015.05.031
  12. Xiong X, Hu S, Hu K, Zeng S. Texture and magnetic property evolution of non-oriented Fe-Si steel due to mechanical cutting, Jof Magn and Magn Mat. 2016; 401: 982-990. https://doi.org/10.1016/j.jmmm.2015.10.023
  13. Leuning N, Steentjes S, Schulte M, Bleck W, Hameyer K. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel. J of Magn and Magn Mat. 2016; 417: 42-48. https://doi.org/10.1016/j.jmmm.2016.05.049
  14. Wang X, Wang Z, Cui R, Li Sh. Influence of blanking process on the magnetic properties of non-oriented electrical steel lamination. J of Shan Jiao Tong Univ. 2019; 53(9): 1115-1121. https://doi.org/10.1109/TMAG.2018.2799839
  15. Wang N, Golovashchenko S.F. Mechanism of fracture of aluminum blanks subjected to stretching along the sheared edge. J of Mat Proc Tech. 2016; 233: 142–160. https://doi.org/10.1016/j.jmatprotec.2016.02.022
  16. Falconnet E, Chambert J, Makich H, Monteil G, Winter S, Nestler M, Galiev E, Hartmann F, Psyk V, Kräusel V, Dix M. Adiabatic blanking: Influence of clearance, impact energy, and velocity on the blanked surface. J of Man and Mat Proc. 2021; 5: 35.
  17. Molitor D.A, Kubik C, Hetfleisch R.H, Groche P. Workpiece image-based tool wear classification in blanking processes using deep convolutional neural networks. Prod Eng. 2022; 1-12. https://doi.org/10.1007/s11740-022-01113-2
  18. Mucha J, Jaworski J. The quality issue of the parts blanked from thin silicon sheets. JMEPEG. 2017; 26: 1865–1877. https://doi.org/10.1007/s11665-017-2589-7
  19. Toda H, Zaizen Y, Namikawa M, Shiga N, Oda Y, Morimoto S. Iron loss deterioration by shearing process in non-oriented electrical steel with different thicknesses and its influence on estimation of motor iron loss. IEEJ J of Ind Appl. 2014; 3 (1): 55-61. https://doi.org/10.1541/ieejjia.3.55
  20. Omura T, Zaizen Y, Fukumura M, Senda K, Toda H. Effect of hardness and thickness of nonoriented electrical steel sheets on iron loss deterioration by shearing process. IEEE Trans on Magn. 2015; 51(11). https://doi.org/10.1109/TMAG.2015.2443176
  21. Schoppa A, Schneider J, Roth J.O. Influence of the cutting process on the magnetic properties of non-oriented electrical steels. J of Magn and Magn Mat. 2000; 215-216: 100-102. https://doi.org/10.1016/S0304-8853(00)00077-9
  22. Rygal R, Moses A. J, Derebasi N, Schneider J, Schoppa A. Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical steels. J of Magn and Mag Mat. 2000; 215–216: 687–689. https://doi.org/10.1016/S0304-8853(00)00259-6
  23. Subramonian S, Altan T, Campbell C, Ciocirlan B. Determination of forces in high speed blanking using FEM and experiments. J of Mat Proc Tech. 2013; 213: 2184-2190. https://doi.org/10.1016/j.jmatprotec.2013.06.014
  24. Wang Z, Li S, Cui R, Wang X, Wang B. Influence of grain size and blanking clearance on magnetic properties deterioration of non-oriented electrical steel. IEEE Trans on Magn. 2018; 54 (5): 1–7. https://doi.org/10.1109/TMAG.2018.2799839
  25. Winter K, Liao Z, Ramanathan R, Axinte D, Vakil G, Gerada C. How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel. Mat and Des. 210. 2021. https://doi.org/10.1016/j.matdes.2021.110051
  26. Smudde CM, D’Elia CR, San Marchi CW, Hill MR, Gibeling JC. Effects of residual stress on orientation dependent fatigue crack growth rates in additively manufactured stainless steel. Int J of Fat. 2023; 169: 107489. https://doi.org/10.1016/j.ijfatigue.2022.107489
  27. Khatri N, Barkachary BM, Muneeswaran B, Al-Sayegh R, Luo X, Goel S. Surface defects incorporated diamond machining of silicon. Int J of Extr Man. 2020; 2(4): 045102. https://doi.org/10.1088/2631-7990/abab4a
  28. Zhao Y, Wang S, Yu W, Long P, Zhang J, Tian W, Gao F, Jin Z, Zheng H, Wang C et al. Simulation and Experimental Study of Laser Processing NdFeB Microarray Structure. Micromachines 2023; 14: 808. https://doi.org/10.3390/mi14040808
  29. Leuning N, Jaeger N, Schauerte M, Stöcker B, Kawalla A et al. Material design for low loss non-oriented electrical steel for energy efficient drives. Materials 2021; 14: 6588. https://doi.org/10.3390/ma14216588
  30. Molitor DA, Kubik C, Hetfleisch RH, Groche P. Workpiece image-based tool wear classification in blanking processes using deep convolutional neural networks. Prod Eng. 2022; 1-12. https://doi.org/10.1007/s11740-022-01113-2
  31. Kamarul Adnan AA, Azinee SN, Norsilawati N, Izzul KAM. Analysis of the influence of the blanking clearance size to the burr development on the sheet of mild steel, brass and aluminium in blanking process. J of Ach in Mat and ManEng 2022;111(1):26-32. https://doi.org/10.5604/01.3001.0015.9093.
  32. Dzidowski ES. Mechanizm pękania poślizgowego w aspekcie dekohezji sterowanej metali. Wydawnictwo Politechniki Wrocławskiej. Wrocław 1990 (in Polish).
  33. Gutknecht F, Steinbach F, Hammer T, Clausmeyer T, Volk W, Tekkaya AE. Analysis of shear cutting dual phase steel by application of an advanced damage model, 21st European Conference on Fracture ECF21. 20-24 June 201. Catania Italy. Procedia Structural Integrity. 2016; 2:1700-1707. https://doi.org/10.1016/j.prostr.2016.06.215
  34. Kułakowski M. Badania wpływu parametrów i warunków procesu cięcia mechanicznego na lokalne zmiany właściwości laserowanych blach elektrotechnicznych. Rozprawa doktorska. Politechnika Koszalińska. Koszalin 2023 (in Polish).
  35. Kukielka L, Kulakowska A, Patyk R. Numerical modeling and simulation of the movable contact tool-worpiece and application in technological processes. Jof Syst. Cyb and Inf. 2010; 8(3): 36-41.
  36. Kukielka L. Nonlinear modeling for elasto/visco – plastic contact problem in technological processes, International Scientific IFNA – ANS Journal, Problems of non – linear Analysis in Engineering Systems 2004;2:39-53.
  37. Kałduński P, Kukiełka L. The numerical analysis of the influence of the blankholder force and the friction coefficient on the value of the drawing force. PAMM 2007; 7 (1): 4010045-4010046. https://doi.org/10.1002/pamm.200701059
  38. Kałduński P, Kukiełka L. The sensitivity analysis of the drawpiece response on the finite element shape parameter. PAMM. 2008; 8 (1): 10725-10726.https://doi.org/10.1002/pamm.200810725
  39. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Frac Mech. 1985; 21 (1): 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  40. Rickhey F, Hong S. Stress triaxiality in anisotropic metal sheets— definition and experimental acquisition for numerical damage prediction. Materials. 2022; 15(11):3738. https://doi.org/10.3390/ma15113738
  41. Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J of Mech Sci. 2004; 46: 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  42. Kuo SK, Lee WC, Lin SY, Lu CY. The influence of cutting edge deformations on magnetic performance degradation of electrical steel. 2014 17th International Conference on Electrical Machines and Systems (ICEMS) 2014; 3041-3046. https://doi.org/10.1109/ICEMS.2014.7014017
  43. Cao H, Hao L, Yi J, Zhang X, Luo Z, Chen Sh et al. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel. J of Mag and Magnetic Materials. 2016; 406: 42–47. https://doi.org/10.1016/j.jmmm.2015.12.098
DOI: https://doi.org/10.2478/ama-2024-0038 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 341 - 351
Submitted on: Jun 19, 2023
Accepted on: Dec 3, 2023
Published on: Jun 26, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Łukasz Bohdal, Agnieszka Kułakowska, Marcin Kułakowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.