Have a personal or library account? Click to login
Experimental Determination of Springback Characteristics in a Three-Point Bending Test of the Aluminium Alloy Sheet with Aluminium Cladding Cover

Experimental Determination of Springback Characteristics in a Three-Point Bending Test of the Aluminium Alloy Sheet with Aluminium Cladding

Open Access
|Jun 2024

References

  1. Himagireesh Ch, Ramji K, Durga Prasad KG, Hari Kiran V. Multi-criteria decision model for selection of a material suitable to lightning strike protection in aerospace applications. Materials Today Proc. 2022;59: 725-733.
  2. Polmear I. Light Alloy - From traditional Alloys to Nanocrystals. Butterworth-Heinemann: Oxford 2006.
  3. Davies G. Materials for Automobile Bodies. Butterworth-Heinemann: Oxford 2003.
  4. Atluri SN, Sampath SG, Tong P. Structural Integrity of Aging Airplanes. Springer Verlag: Berlin/Heidelberg 1991.
  5. Pantelakis SpG, Chamos AN, Setsika D. Tolerable corrosion damage on aircraft aluminium structures: Local cladding patterns. Theor. Appl. Fracture Mech. 2012;58:55-64.
  6. Zinonga T, Binga Z, Junb J, Zhiqianga L, Jianguob L. A study on the hot roll bonding of aluminium alloys. Procedia Manufacturing. 2020; 50:56-62.
  7. Kučera V, Vojtěch D. Influence of the Heat Treatment on Corrosion Behavior and Mechanical properties of the AA 7075 Alloy. Manufacturing Technology. 2017;17:747-752.
  8. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, et al. Recent development in aluminium alloys for the automotive industry. Compos Sci. Technol. 2000;280:37-49.
  9. May A, Belouchrani MA, Taharboucht S,Boudras A. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated. Procedia Engineering. 2010; 2:1795-1804.
  10. Sun S, Fang Y, Zhang L, Li C, Hu S. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT. J. Mater. Res. Technol. 2020;9:3219-3229.
  11. ASM Handbook, Volume 4. Heat Treating ASM Handbook Committee, p. 841-879. DOI: 10.1361/asmhba0001205
  12. Sobotka J, Solfronk P, Kolnerova M, Korecek D. Influence of technological parameters on ageing of aluminium alloy AW-2024. Manufacturing Technology. 2018;18:1023-1028.
  13. Fallah Tafti M, Sedighi M, Hashemi R. Effects of natural ageing treatment on mechanical, microstructural and forming properties of Al 2024 aluminum alloy sheets. Iranian J. Mater. Sci. Engng. 2018;15:1-10. doi: 10.22068/ijmse.15.4.1
  14. Kut S, Pasowicz G, Stachowicz F. The influence of natural aging of the AlCu4Mg1 aluminum sheet alloy on the constitutive parameters of selected models of flow stress. Adv. Sci. Technol. Res. J. 2022;16: 216-229. doi.org/10.12913/22998624/154792
  15. Kut S, Pasowicz G, Stachowicz F. On the springback and load in three-point air bending of the AW-2024 aluminium alloy sheet with AW-1050A aluminium cladding. Materials. 2023;16:2945. doi. 10.3390/ma16082945.
  16. Sharma PK, Gautam V, Agrawal AK. Analytical and numerical prediction of Springback of SS/Al-alloy cladded sheet in V-Bending. J. Manuf. Sci. Eng. 2021;143(3):031011.
  17. https://doi.org/10.1115/1.4048953
  18. Zhu YX, Liu YL, Yang H, Li HP. Development and application of the material constitutive model in springback prediction of cold bending. Materials Designe. 2012;42:245-258.
  19. Wu Z, Gong J, Chen Y, Wang J, Wei Y, Gao J. Springback prediction of dieless forming of AZM120 sheet metal based on constitutive model. Metals. 2020;10:780. doi:10.3390/met10060780.
  20. Vorkov V, Aerens R, Vandepitte D, Duflou JR. Springback prediction of high-strength steels in large radius air bending using finite element modeling approach. Procedia Eng. 2014;81:1005-1010. doi:10.1016/j.proeng.2014.10.132
  21. Lin J, Hou Y, Min J, Tang H, Carsley JE, Stoughton TB. Effect of constitutive model on springback prediction of MP980 and AA6022-T4. Int. J. Material Forming. 2020;13:1-13. doi.org/10.1007/s12289-018-01468-x
  22. Sharma PK, Gautam V, Agrawal AK. Experimental and numerical investigations of springback and residual stresses in bending of a three-ply clad sheet. Proc IMechE Part L: J. Materials: Design Applications. 2021;235,2823-2838 https://doi.org/10.1177/14644207211037006
  23. Trzepieciński T, Lemu HG. Improving prediction of springback in sheet metal forming using multilayer perceptron-based genetic algorithm. Materials. 2020;13:3129. doi.org/10.3390/ma13143129.
  24. Yilamua K, Hino R, Hamasaki H, Yoshida F. Air bending and spring-back of stainless steel clad aluminium sheet. J. Mater. Proc. Technol. 2010;210:272-278. doi.org/10.1016/j.jmatprotec.2009.09.010.
  25. AMS2770. Heat Treatment of Wrought Aluminum Alloy Parts. Rev. 2015-09.
DOI: https://doi.org/10.2478/ama-2024-0034 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 307 - 313
Submitted on: Apr 7, 2023
Accepted on: Nov 3, 2023
Published on: Jun 26, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Stanisław Kut, Grzegorz Pasowicz, Feliks Stachowicz, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.