Have a personal or library account? Click to login
Thermal Stresses in A Multi-Layered Spherical Tank with a Slowly Graded Structure Cover

Thermal Stresses in A Multi-Layered Spherical Tank with a Slowly Graded Structure

Open Access
|Jun 2024

References

  1. Achenbach JD. A theory of elasticity with microstructure for directionally reinforces composites. Wien: Springer-Verlag; 1975.
  2. Bedford A, Stern M. Toward a diffusing continuum theory of composite materials. J. Appl. Mech. 1971; 38: 8-14.
  3. Bensoussan A, Lions JL, Papanicolau AG. Asymptotic methods in periodic structures. Amsterdam: North-Holland 1978.
  4. Bufler H, Krennerknecht H. Prestrained elastic laminates: deformations, stability and vibrations, Acta Mechanica. 1999; 48: 1-30.
  5. Chen B, Tong L. Sensitivity analysis of heat conduction for functionally graded materials. Materials & Design. 2004; 25(8): 663-672.
  6. Gan H, Orozco CE, Herkovich CT. A strain-compatibile method for micromechanical analysis of multi-phase composites, Int. J. Solids Struct. 2000; 37: 5097-5122.
  7. Ganczarski A, Skrzypek J. Mechanika nowoczesnych materiałów, Kraków: W-wo Politechniki Krakowskiej 2013.
  8. Jihov VV, Kozlov SM, Oleynik OA. Homogenization of differential operators and integral functionals. Berlin: Springer 1994.
  9. Kaczyński A. Three-dimensional thermoelastic problems of interface crack in periodic two-layered composites. Engineering Fracture Mechanics. 1994; 62(6): 783-800.
  10. Kirchhoff G, Göbel Th, Bahr H-A, Balke H, Wetzig K, Bartsch K. Damage analysis for thermally cycled (Ti, Al)N coatings – estimation of strength and interface fracture toughness. Surface Coat. Tech. 2004; 179: 39-46.
  11. Kushnir RM, Yasinskyy AV, Tokovyy YV. Effect of material properties in the direct and inverse thermomechanical analyses of multilayer functionally graded solids. Adv. Eng. Mater. 2022; 24(5): 110-115.
  12. Kulchytsky-Zhyhailo R, Matysiak SJ. On heat conduction problem in a semi–infinite periodically laminated layer. Int. Comm. Heat Mass Transfer. 2005; 32: 123-132.
  13. Kulchytsky-Zhyhailo R, Matysiak SJ. On some heat conduction problem in a periodically two–layered body. Comparative results. Int. Comm. Heat Mass Transfer. 2005; 32: 332-340.
  14. Kulchytsky-Zhyhailo R, Kolodziejczyk W. On the axisymmetric contact problem of pressure of a rigid sphere into a periodically two-layered semi-space. Int. J. Mech. Sci. 2007; 49: 704-711.
  15. Kulchytsky-Zhyhailo R, Matysiak SJ, Perkowski DM. On displacements and stresses in a semi-infinite laminated layer: comparative results. Meccanica. 2007; 42: 117-126.
  16. Kulchytsky-Zhyhailo R, Matysiak SJ, Perkowski DM. On some thermoelastic problem of a nonhomogeneous long pipe. Int. J. Heat and Technology. 2021; 39(5): 1430-1442.
  17. Lee WY, Stinton DP, Berndt CC, Erdogen F, Lee Y–D, Mutasin Z. Concept of functionally graded materials for advanced thermal barrier coating applications. J. Amer. Ceram. Soc. 1996; 79: 3003-3012.
  18. Matysiak SJ, Woźniak Cz. Micromorphic effects in a modeling of periodic multilayered elastic composites. Int. J. Engng. Sci. 1987; 25: 549-559.
  19. Nowacki W. Thermoelasticity. Warszawa: PWN; 1986.
  20. Paley M, Aboudi J. Micromechanical analysis of composites by generalized method of cells. Mechanics and Materials. 1992; 14: 127-139.
  21. Reuss A. Berechnung der Flissgrenze von Mischk ristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. angew. Math. Mech. 1929; 9: 49-58.
  22. Sanchez-Palencia E. Non-homogeneous media and vibration theory. Berlin: Springer-Verlag 1989.
  23. Schulz U, Bach FW, Tegeder G. Graded coating for thermal, wear and corrosion barriers. Mater. Sci. Eng. Ser. A. 2003; 362(1-2): 61-80.
  24. Szymczyk J, Woźniak Cz. Continuum modelling of laminates with a slowly graded microstructure. Arch. Mech. 2006; 58(4-5): 445-458.
  25. Timoshenko S, Goodier JN. Theory of elasticity. New York: McGraw-Hill Book Company 1951.
  26. Wang BL, Han JC, Du SY. Crack problems for functionally graded materials under transient thermal loading. Journal of Thermal Stresses. 2000; 23(2): 143-168.
  27. Voigt W. Über die Beziehungen zwischen beiden Elastizitätskonstanten isotroper Körpär. Wied. Ann. 1889; 38: 573-587.
  28. Woźniak Cz. A nonstandard method of modelling of thermoelastic periodic composites. Int. J. Engng. Sci. 1987; 25: 483-499.
DOI: https://doi.org/10.2478/ama-2024-0030 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 274 - 281
Submitted on: Jun 5, 2023
Accepted on: Sep 28, 2023
Published on: Jun 26, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Roman Kulchytsky-Zhyhailo, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.