References
- Y. GH, Scott T, W. SP. Concrete Slab Damage and Hazard from Close-In Detonation of Weaponized Commercial Unmanned Aerial Vehicles. J Struct Eng [Internet]. 2021;147(11):4021190. Available from: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003158
- Morka A, Kędzierski P, Muzolf P. Optimization of the structure of a ceramic-aluminum alloy composite subjected to the impact of hard steel projectiles. Mech Compos Mater. 2016;52(3):333–46.
- Kędzierski P, Morka A, Sławiński G, Niezgoda T. Optimization of two-component armour. Bull Polish Acad Sci Tech Sci. 2015;63(1): 173–9.
- Wang J, Yin Y, Esmaieli K. Numerical simulations of rock blasting damage based on laboratory-scale experiments. J Geophys Eng. 2018;15(6):2399–417.
- Liu K, Wu C, Li X, Li Q, Fang J, Liu J. A modified HJC model for improved dynamic response of brittle materials under blasting loads. Comput Geotech [Internet]. 2020;123(December 2019):103584. Available from: https://doi.org/10.1016/j.compgeo.2020.103584
- Simons EC, Weerheijm J, Sluys LJ. A viscosity regularized plasticity model for ceramics. Eur J Mech A/Solids. 2018;
- Johnson GR, Holmquist TJ. Response of boron carbide subjected to large strains, high strain rates, and high pressures. J Appl Phys. 1999;85(12):8060–73.
- Holmquist TJ, Johnson GR, Cook WH. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In: The 14th international symposium on ballistic. Quebec: Arlington, VA: American Defense Preparedness Association. 1993; 591–600.
- Mardalizad A, Caruso M, Manes A, Giglio M. Investigation of mechanical behaviour of a quasi-brittle material using Karagozian and Case concrete (KCC) model. J Rock Mech Geotech Eng. 2019.
- Pająk M, Janiszewski J, Kruszka L. Laboratory investigation on the influence of high compressive strain rates on the hybrid fibre reinforced self-compacting concrete. Constr Build Mater. 2019;227: 116687.
- Sucharda O, Pajak M, Ponikiewski T, Konecny P. Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis. Constr Build Mater [Internet]. 2017;138:263–75. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2017.01.077
- Máca P, Sovják R, Konvalinka P. Mix design of UHPFRC and its response to projectile impact. Int J Impact Eng. 2014;63:158–63.
- Sovják R, Vavřiník T, Zatloukal J, Máca P, Mičunek T, Frydrýn M. Resistance of slim UHPFRC targets to projectile impact using in-service bullets. Int J Impact Eng. 2015;76:166–77.
- Sielicki PW, Łodygowski T. Masonry wall behaviour under explosive loading. Eng Fail Anal. 2019;104:274–91.
- Wu H, Qin, Zhang YD, Gong ZM, Wu H, Fang Q, et al. Semi-theoretical analyses of the concrete plate perforated by a rigid projectile. Acta Mech Sin. 2012;28(6):1630–43.
- Wang Z liang L, Li Y chi C, Shen RF. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int J Rock Mech Min Sci. 2007;44(5):730–8.
- Mazurkiewicz Ł, Damaziak K, Małachowski J, Baranowski P. Parametric study of numerically modelled delamination process in a composite structure subjected to dynamic loading. Eng Trans. 2013;61(1):15–31.
- Mazurkiewicz Ł, Małachowski J, Baranowski P. Optimization of protective panel for critical supporting elements. Compos Struct. 2015;134:493–505.
- Peng Y, Wu H, Fang Q, Liu JZ, Gong ZM. Flat nosed projectile penetrating into UHP-SFRC target: Experiment and analysis. Int J Impact Eng. 2016;93:88–98.
- Liang X, Wu C. Meso-scale modelling of steel fibre reinforced concrete with high strength. Constr Build Mater [Internet]. 2018;165:187–98. Available from: https://doi.org/10.1016/j.conbuildmat.2018.01.028
- Wu H, Li YC, Fang Q, Peng Y. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses. Constr Build Mater. 2019;208:506–24.
- Liu Z, Zhang C, Zhang C, Gao Y, Zhou H, Chang Z. Deformation and failure characteristics and fracture evolution of cryptocrystalline basalt. J Rock Mech Geotech Eng. 2019;11(5):990–1003.
- Lv TH, Chen XW, Chen G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr Build Mater. 2018;160:744–64.
- Wang J, Yin Y, Luo C. Johnson–Holmquist-II(JH-2) Constitutive Model for Rock Materials: Parameter Determination and Application in Tunnel Smooth Blasting. Appl Sci. 2018 Sep 16;8(9):1675.
- Kang HM, Kang MS, Kim MS, Kwak HK, Park LJ, Cho SH. Experimental and numerical study of the dynamic failure behavior of rock materials subjected to various impact loads. In: WIT Transactions on the Built Environment. WITPress; 2014;357–67.
- Li XB, Hong L, Yin TB, Zhou ZL, Ye ZY. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol.2008;15(2):218–23.
- Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302.
- Zhang J, Wang Z, Yang H, Wang Z, Shu X. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates. Constr Build Mater. 2018;164:350–61.
- Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact Eng. 2015;77:108–19.
- Ruggiero A, Iannitti G, Bonora N, Ferraro M. Determination of Johnson-holmquist constitutive model parameters for fused silica. EPJ Web Conf. 2012;26:04011.
- Hao Y, Hao H, Zhang XH. Numerical analysis of concrete material properties at high strain rate under direct tension. Int J Impact Eng. 2012;39(1):51–62.
- Xiao J, Li W, Corr DJ, Shah SP. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cem Concr Res. 2013;52:82–99.
- Kucewicz M, Baranowski P, Małachowski J. Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci. 2020;129.
- Kucewicz Michałand Baranowski PGR, Małachowski J. Investigation of dolomite’rock brittle fracture using fully calibrated Karagozian Case Concrete model. Int J Mech Sci. 2022;107197.
- Huang Y, Yang Z, Ren W, Liu G, Zhang C. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. Int J Solids Struct [Internet]. 2015;67–68:340–52. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2015.05.002
- Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302.
- Zhang R, Li P yu, Zhi X dong, Wang Y hui, Fan F. Johnson– Holmquist-II model of annealed glass and its verification in dynamic compression test. Structures [Internet]. 2023;53(March):396–407. Available from: https://doi.org/10.1016/j.istruc.2023.04.082
- Li M, Hao H, Cui J, Hao Y fei. Numerical investigation of the failure mechanism of cubic concrete specimens in SHPB tests. Def Technol [Internet]. 2022;18(1):1–11. Available from: https://doi.org/10.1016/j.dt.2021.05.003
- Ren L, Yu X, Guo Z, Xiao L. Numerical investigation of the dynamic increase factor of ultra-high performance concrete based on SHPB technology. Constr Build Mater [Internet]. 2022;325:126756. Available from: https://doi.org/10.1016/j.conbuildmat.2022.126756
- Lv Y, Wu H, Dong H, Zhao H, Li M, Huang F. Experimental and numerical simulation study of fiber-reinforced high strength concrete at high strain rates. J Build Eng [Internet]. 2023;65:105812. Available from: https://doi.org/10.1016/j.jobe.2022.105812
- Deshpande VM, Chakraborty P, Chakraborty T, Tiwari V. Application of copper as a pulse shaper in SHPB tests on brittle materials- experimental study, constitutive parameters identification, and numerical simulations. Mech Mater [Internet]. 2022;171:104336. Available from: https://doi.org/10.1016/j.mechmat.2022.104336
- Kucewicz M, Baranowski P, Mazurkiewicz Ł, Małachowski J. Comparison of selected blasting constitutive models for reproducing the dynamic fragmentation of rock. Int J Impact Eng. 2023;173.
- Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. In AIP Publishing; 2008;981–4.
- Holmquist TJ, Johnson GR, Grady DE, Lopatin CM, Hertel ES. High strain rate properties and constitutive modeling of glass. In: Mayseless M, Bodner S., editors. Proceedings of 15th International Symposium on Ballistics. Jerusalem, Israel; 1995;234–44.
- Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. Int J Impact Eng. 2001;25(3):211–31.
- Ai HA, Ahrens TJ. Simulation of dynamic response of granite: A numerical approach of shock-induced damage beneath impact craters. Int J Impact Eng. 2006;33(1–12):1–10.
- Dehghan Banadaki MM, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng. 2012;40–41:16–25.
- Stanislawek S, Morka A, Niezgoda T. Pyramidal ceramic armor ability to defeat projectile threat by changing its trajectory. Bull Polish Acad Sci Tech Sci. 2015;63(4):843–9.
- Ruggiero A, Iannitti G, Bonora N, Ferraro M. Determination of Johnson-holmquist constitutive model parameters for fused silica. EPJ Web Conf 26. 2012;04011:1–4.
- Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact Eng. 2015;77:108–19.
- Baranowski P, Kucewicz M, Gieleta R, Stankiewicz M, Konarzewski M, Bogusz P, et al. Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations. Int J Impact Eng. 2020;140:103543.
- Baranowski P, Kucewicz M, Janiszewski J. JH-2 constitutive model of sandstone for dynamic problems. Submitt to J (under Rev Int J Impact Eng. 2023.
- Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302:124379.
- Hallquist J. LS-DYNA Theory Manual [Internet]. Vol. 19. Livermore Software Technology Corporation (LSTC); 2019. 886 p. Available from:http://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_Theory.pdf
- Kurzawa A, Pyka D, Jamroziak K, Bocian M, Kotowski P. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al 2 O 3 particles. Compos. Struct.2018;201 :834 –44.
- Pach J, Pyka D, Jamroziak K, Mayer P. The experimental and numerical analysis of the ballistic resistance of polymer composites. Compos Part B. 2017;113:24–30.
- Mazurkiewicz Ł, Małachowski J, Tomaszewski M, Baranowski P, Yukhymets P. Performance of steel pipe reinforced with composite sleave. Compos Struct. 2018;183:199–211.
- Zienkiewicz O, Taylor R, Zhu JZ. The Finite Element Method: its Basis and Fundamentals: Seventh Edition. The Finite Element Method: its Basis and Fundamentals: Seventh Edition. 2013. 1–714 p.
- Bathe K J. Finite Element Procedures [M] [Internet]. 2005; 1037 Available from: http://books.google.com/books?id=wKRRAAAAMAAJ&pgis=1%5Cnftp://ftp.demec.ufpr.br/disciplinas/EME748/Textos/Bathe,K.-J.-FiniteElementProcedures-1996-Prentice-Hall-ISBN0133014584-1052s.pdf
- Logan D.L. A first course in the finite element method. 5th ed. Cengage Learning; 2010.
- J. R. An Introduction to the Finite Element Method. 3rd ed. McGraw-Hill Education; 2005.
- Kleiber M, Breitkopf P. Finite Element Methods in Structural Mechanics: With Pascal Programs. Ellis Horwood; 1993.
- Gander MJ, Wanner G. From euler, ritz, and galerkin to modern computing. SIAM Rev. 2012;54(4):627–66.
- Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–89.
- Liu GR, Gu YT. An introduction to meshfree methods and their programming. An Introd to Meshfree Methods Their Program. 2005;1–479.
- Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch Comput Methods Eng. 2010;17(1):25–76.
- Gasiorek D, Baranowski P, Malachowski J, Mazurkiewicz L, Wiercigroch M. Modelling of guillotine cutting of multi-layered aluminum sheets. J Manuf Process [Internet]. 2018 Aug;34:374–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526612518307059
- Baranowski Pawełand Janiszewski J, Malachowski J. Study on computational methods applied to modelling of pulse shaper in split-Hopkinson bar. Arch Mech. 2014;66(6):429–52.
- Wriggers P. Computational contact mechanics. Computational Contact Mechanics. 2006;1–518.
- Vulović S, Živković M, Grujović N, Slavković R. A comparative study of contact problems solution based on the penalty and Lagrange multiplier approaches. J Serbian Soc Comput Mech. 2007;1(1):174–83.
- Yastrebov VA. Introduction to Computational Contact. In: Numerical Methods in Contact Mechanics. 2013; 1–14.
- Kucewicz M, Baranowski P, Małachowski J, Ma J. Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci. 2020;129.