Have a personal or library account? Click to login
Testing the Thermal Properties of the Insulating Structures of A Flight Data Recorder Cover

Testing the Thermal Properties of the Insulating Structures of A Flight Data Recorder

Open Access
|Jun 2024

References

  1. Ångström AJ. Neue Methode, das Warmeleitungsvermogen der Korper zu Bestimmen. Annalen der Physic und Chemie. 1861;114:513-530.
  2. Ariaki N, Tang DW, Makino A, Hashimoto M, Sano T. Transient Characteristics of Thermal Conduction in Dispersed Composites. Int JThermophys. 1998;19(1):1239-1251.
  3. Belling JM, Unsworth J. Modified Ångström‘s method for measurement of thermal diffusivity of materials with low conductivity. Rev.Sci. Instrum. 1987;58(6):997-1002
  4. Dagan G. Effective, equivalent and apparent properties of heterogeneous media. H. Aref and J.W. Philips (eds.), Mechanics for a New Millenium, Kluwer Academic Publishers, 2001; 473-486
  5. Ebert HP, Braxmeier S, Reichenauer G, Hemberger F, Lied F, Wein-rich D, Fricke M. Intercomparison of Thermal Conductivity Measurements on a Nanoporous Organic Aerogel. Int. J. Thermophys. 2021;42(21):1-18.
  6. EuroCAE ED 112. Minimum operational performance specification for crash protected airborne recorder systems, Revision A September 1. 2013.
  7. Etex Industry. Promat Technical Data Sheet. Promalight®. 2022. Available from: www.promat-industry.com
  8. Goual MS, Bali A, Quéneudec M. Effective thermal conductivity of clayey aerated concrete in the dry state: experimental results and modeling. J. Phys. D, Applied Physics. 1999;32:3041-3046.
  9. Grimvall G. Thermophysical Properties of Materials. Amsterdam: Elsevier Science Publish-ers B.V.; 1986. p.347
  10. Jakielaszek Z, Panas AJ, Nowakowski M, Klemba T, Fikus B. Evaluation of numerical modeling application for the crash test planning of the catastrophic Flight Data Recorder. J. Mar. Eng.Technol. 2017;16(4):319-325
  11. Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S. Apparent and effective physical properties of heterogenous materials: Representativity of samples of two materials from food industry. Comput Methods Appl Mech Engi, 2006;195:3960 – 3982.
  12. Maglić KD, Cezairliyan A, Peletsky VE (Eds.).Compendium of Thermophysical Property Measurement Methods. Volume 1: Survey of Measurement Techniques. New York: Plenum Press. 1984.
  13. Maglić KD, Cezairliyan A, Peletsky VE. Compendium of Thermo-physical Property Measurement Methods. 1992 Vol. 2: Recommended measurement Techniques and Practices. New York: Plenum Press 1992,
  14. NO-16-A200. Wojskowe statki powietrzne, Pokładowe rejestratory katastroficzne, Wymagania i badania [Military aircraft, On-board catastrophic recorders, Requirements and tests] 2006.
  15. McNaughton JL, Mortimer CT. Differential Scanning Calorimetry. IRS. Physical Chemistry Series 2 Vol.10. London: Butterworths; Norwalk: reprinted by Perkin-Elmer Corp. 1975; 44.
  16. Ostoja-Starzewski M. Mechanics of Random Media. Warszawa: Military University of Technology 2017.
  17. Panas AJ. B-spline approximation of DSC data of specific heat of NiAl and NiCr alloys. Arch Thermod. 2003;24:47–65.
  18. Panas AJ, Panas D. DSC investigation of binary iron-nickel alloys. High Temp. – High Press 2009;38(1):63-78.
  19. Panas AJ. Comparative-Complementary Investigations of Thermo-physical Properties – High Thermal Resolution Procedures In Practice. Zmeskal, O. et al. (eds). Thermophysics. Brno University of Technology. Faculty of Chemistry. 2010; 218-235.
  20. Panas AJ. IR Support of Thermophysical Property Investigation. Medical and Advanced Technology Materials Study. Prakash, R.V. (Ed.). Infrared Thermography. InTech (Rijeka). 2012;65-90.
  21. Panas AJ, Fikus B, Płatek P, Kunce I, Dyjak S, Michalska-Domanska M, Witek K, Kuziora P, Olejarczyk A, Jaroszewicz L, Polański M. Pressurised-cell test stand with oscillating heating for investigation heat transfer phenomena in metal hydride beds. Int. J. Hydrogen Energy. 2016;41:16974-16983.
  22. Panas AJ, Błaszczyk J, Dudziński A, Figur K, Foltyńska A, Krupińska A, Nowakowski M. Badania wpływu temperatury na zmiany właściwości cieplnych i mechanicznych osnowy lotniczego konstrukcyjnego materiału kompozytowego. Mechanika w lotnictwie ML-XVII. tom II. Warszawa: PTMTS 2016.
  23. Pietrak K, Wiśniewski ST. A review of models for effective thermal conductivity of composite materials. J Pow Technol. 2015;95(1): 14-24.
  24. Reif F. Fizyka statystyczna. Warszawa: PWN. 1971; 394.
  25. Wendlandt WW. Thermal Analysis. 3rd ed. New York: John Willey & Sons. 1986; 815.
  26. Wiśniewski S, Wiśniewski T. Wymiana ciepła. Warszawa:WNT. 2000; 445.
  27. Friedrich K, Fakirov S, Zhang Z. Czigány T. Discontinuous basalt fibre-reinforced hybrid composite. Polymer composites: from nano- to macro scale. 2005;309-328.
  28. Szczepaniak R, Kozun G, Przybylek P, Komorek A, Krzyzak A, Woroniak G. The effect of the application of a powder additive of a phase change material on the ablative properties of a hybrid composite. Compos Struct. 2021;256:113041. https://doi.org/10.1016/j.compstruct.2020.113041
  29. Krzyżak A, Kucharczyk W, Gąska J, Szczepaniak R. Ablative test of composites with epoxy resin and expanded perlite. Compos Struct. 2018;202:978-987. https://doi.org/10.1016/j.compstruct.2018.05.018
  30. Przybyłek P, Komorek A, Szczepaniak R. The Influence of Metal Reinforcement upon the Ablative Properties of Multi-Layered Composites.Adv SciTechnol Res J. 2023;17(2).
DOI: https://doi.org/10.2478/ama-2024-0028 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 244 - 251
Submitted on: Mar 29, 2023
Accepted on: Sep 24, 2023
Published on: Jun 26, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Andrzej J. Panas, Robert Szczepaniak, Anna Krupińska, Krzysztof Łęczycki, Mirosław Nowakowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.