Have a personal or library account? Click to login
Homotopy Perturbation Method with Trefftz Functions and Simcenter STAR-CCM+ Used for the Analysis of Flow Boiling Heat Transfer Cover

Homotopy Perturbation Method with Trefftz Functions and Simcenter STAR-CCM+ Used for the Analysis of Flow Boiling Heat Transfer

Open Access
|Jun 2024

References

  1. Tibirica CB, Ribatski G. Flow boiling in micro-scale channels - Synthesized literature review. International Journal of Refrigeration. 2013;36(2): 301-324. https://doi.org/10.1016/j.ijrefrig.2012.11.019
  2. Da Silva PF, de Oliveira JD, Copetti JB, Macagnan MH, Cardoso EM. Flow boiling pressure drop and flow patterns of R-600a in a multiport minichannels. International Journal of Refrigeration. 2023;148: 13-24. http://doi.org/10.1016/j.ijrefrig.2023.01.001
  3. Wang D, Wang D, Hong F, Xu J, Zhanga C. Experimental study on flow boiling characteristics of R-1233zd(E) of counter-flow interconnected minichannel heat sink. International Journal of Heat and Mass Transfer. 2023;215(124481):1-19. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124481
  4. Rafałko G, Grzybowski H, Dzienis P, Zaborowska I, Mosdorf R, Litak G. Recurrence analysis of phase distribution changes during boiling flow in parallel minichannels. The European Physical Journal Special Topics. 2023;232: 201-207. https://doi.org/10.1140/epjs/s11734-022-00741-0
  5. Saghir MZ, Alhajaj Z. Optimum multi-mini-channels height for heat enhancement under forced convection condition. Energies. 2021;14(7020):1-13. https://doi.org/10.3390/en14217020
  6. Piasecka M, Piasecki A, Dadas N. Experimental Study and CFD Modeling of Fluid Flow and Heat Transfer Characteristics in a Mini-channel Heat Sink Using Simcenter STAR-CCM+ Software. Energies. 2022;15(536):1-20.https://doi.org/10.3390/en15020536
  7. Piasecka M, Strąk K. Influence of the Surface Enhancement on the Heat Transfer in a Minichannel. Heat Transfer Engineering. 2019;40(13-14): 1162-1175. https://doi.org/10.1080/01457632.2018.1457264
  8. Piasecka M, Maciejewska B, Łabędzki P. Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software. Energies. 2020;13(6647): 1-25. https://doi.org/10.3390/en13246647
  9. Hadamard J. Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique. Princet. Univ. Bull. 1902;13: 49–52.
  10. Kurpisz K, Nowak AJ. Inverse Thermal Problems. Southampton, UK and Boston: Computational Mechanics Publications; 1995.
  11. Bakushinskii A, Goncharsky A. Ill-Posed Problems:Theory and Applications. Dordrecht: Kluwer; 1995.
  12. Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. Numerical Methods for the Solution of Ill-Posed Problems. London: Kluwer Academic; 1990.
  13. Lesnic D. Inverse Problems with Applications in Science and Engineering. New York: Chapman and Hall/CRC; 2021. https://doi.org/10.1201/9780429400629
  14. Belgacem Ben F, El Fekih H. On Cauchy’s Problem: I. A Variational Steklov-Poincar´e Theory. Inverse Problems. 2005;21:1915–1936. https://doi.org/10.1088/0266-5611/21/6/008
  15. Ciałkowski MJ, Frąckowiak A, Grysa K. Solution of a stationary inverse heat conduction problems by means of Trefftz non-continuous method. International Journal of Heat and Mass Transfer. 2007;50: 2170-2181. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.030
  16. Maciąg A, Grysa K. Temperature dependent thermal conductivity determination and source identification for nonlinear heat conduction by means of the Trefftz and Homotopy perturbation methods. International Journal of Heat and Mass Transfer. 2016;100: 627-633. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.103
  17. Ciałkowski MJ, Grysa K. A sequential and global method of solving an inverse problem of heat conduction equation. Journal of Theoretical and Applied Mechanics. 2010;48(1): 111-134.
  18. Liu CS. A modified collocation Trefftz method for the inverse Cauchy problem of Laplace equation. Engineering Analysis with Boundary Elements. 2008;32(9):778-785. https://doi.org/10.1016/j.enganabound.2007.12.002
  19. Qin QH. The Trefftz Finite and Boundary Element Method. Southampton: WIT Press; 2000.
  20. Grysa K, Maciąg A. Homotopy perturbation method and Trefftz functions in the source function identification. Singapore: APCOM&ISCM, 2013 Dec 11-14.
  21. Hożejowska S. Homotopy perturbation method combined with Trefftz method in numerical identification of liquid temperature in flow boiling. Journal of Theoretical and Applied Mechanics. 2015;53(4): 969-980. https://doi.org/10.15632/jtam-pl.53.4.969
  22. Maciąg A, Pawińska A. The solution of nonlinear direct and inverse problems for beam by means of the Trefftz functions. European Journal of Mechanics - A/Solids. 2022;92:1-6. https://doi.org/10.1016/j.euromechsol.2021.104476
  23. Trefftz E. Ein Gegenstück zum Ritzschen Verfahren. 2 Int. Kongress für Technische Mechanik. 1926: 131-137.
  24. Hożejowska S, Hożejowski L, Piasecka M. Radial basis functions in mathematical modelling of flow boiling in minichannels. EPJ Web of Conferences. 2017;143(02037):1-5.
  25. Zhao X, Li JM, Riffat SB. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering. 2008;28:1942-1951. https://doi.org/10.1016/j.applthermaleng.2007.12.006
  26. Zibart A, Kenig EY. Numerical investigation of conjugate heat transfer in a pillow-plate heat exchanger. International Journal of Heat and Mass Transfer. 2021;165(120567):1-17. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120567
  27. Gorobets V, Trokhaniak V, Bohdan Y, Antypov I. Numerical Modeling of Heat Transfer and Hydrodynamics in Compact Shifted Arrangement Small Diameter Tube Bundles. Journal of Applied and Computational Mechanics. 2021;7(1):292-301. https://doi.org/10.22055/jacm.2020.31007.1855
  28. Lee W-J, Jeong JH. Development of a numerical analysis model for a multi-port minichannel heat exchanger considering a two-phase flow distribution in the header. Part I: Numerical modelling. International Journal of Heat and Mass Transfer. 2019;138: 1264-128 https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.100
  29. Adam A, Han D, He W, Chen J. Numerical analysis of cross-flow plate type indirect evaporative cooler: Modeling and parametric analysis. Applied Thermal Engineering. 2021;185(116379):1-13. https://doi.org/10.1016/j.applthermaleng.2020.116379
  30. Ayli E, Bayer O, Aradag S. Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes. International Journal of Thermal Sciences. 2016;109: 279-290. https://doi.org/10.1016/j.ijthermalsci.2016.06.021
  31. Mu Y-T, Chen L, He Y-L, Tao W-Q. Numerical study on temperature uniformity in a novel mini-channel heat sink with different flow field configurations. International Journal of Heat and Mass Transfer. 2015;85: 147-157 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.093
  32. https://www.3m.com/3M/en_US/p/d/b5005005025/
  33. https://www.3m.com/3M/en_US/p/d/b40044867/
  34. https://www.3m.com/3M/en_US/p/d/b40045142/
  35. https://www.3m.com/
  36. Piasecka M, Hożejowska S, Maciejewska B, Pawińska A. Time-dependent heat transfer calculations with Trefftz and Picard methods for flow boiling in a mini-channel heat sink. Energies. 2021;14: 1-24. https://doi.org/10.3390/en14071832
  37. Biazar J, Ghazvini H. Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis: Real World Applications. 2009;10: 2633-2640. https://doi.org/10.1016/j.nonrwa.2008.07.002
  38. Piasecka M, Strąk K. Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations. Energies. 2021;14(4891):1-29. https://doi.org/10.3390/en14164891
DOI: https://doi.org/10.2478/ama-2024-0027 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 233 - 243
Submitted on: Feb 28, 2023
|
Accepted on: Sep 20, 2023
|
Published on: Jun 26, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Anna Pawińska, Artur Piasecki, Norbert Dadas, Sylwia Hożejowska, Magdalena Piasecka, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.