Have a personal or library account? Click to login
Assessment of Parameters of the Vibration-Based Energy Harvesting System Located in the Micro-Power Generator Cover

Assessment of Parameters of the Vibration-Based Energy Harvesting System Located in the Micro-Power Generator

Open Access
|Jun 2024

References

  1. Bradai S, Naifar S, Viehweger C, Kanoun O, Litak G. Nonlinear analysis of electrodynamics broadband energy harvester. European Physical Journal. Special Topics. 2015; 224: 2919-2927.
  2. Chen Y, Yan Z. Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity. International Journal of Mechanical Science. 2020;173:105473.
  3. Wang L, Yuan FG. Vibration energy harvesting by magnetostrictive material. Smart Mater Structures. 2008; 17(4).
  4. Wei Ch, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustinable Energy Reviews. 2017; 74: 1-18.
  5. Dey S, Roy D, Patra S, Santra T. Performance of a modified magnetostrictive energy harvester in mechanical vibration. Heliyon. 2019; 5 (1).
  6. Lei W, Yuang FG. Vibration energy harvesting by magnetostrictive material. Smart Material Structures. 2008; 17(4): 045009.
  7. Lee CS, Joo J, Han S, Lee JH, Koh SK. Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylendioxythiopene) electrodes. Synthetic Metal 2005; 152(1-3): 49-52.
  8. Morita T. Miniature piezoelectric motors, Sensors and Actuators. A: Physical. 2003: 103(3): 291-300.
  9. Nicoletti R, de Araujo MVV. Electromagnetic harvester for lateral vibration in rotating machines. Mechanical Systems and Signal Processing. 2015:(52-53):685-699.
  10. Wang I. Vibration Energy Harvesting by Magnetostractive Material for Powering Wireless Sensors. 2007. Doctoral Thesis.
  11. Ouro-Koura H, Sotoudeh Z, Tichy JA, Borca-Tascius DA. Effectiveness of energy transfer versus mixing entropy in coupled mechanical-electrical oscillatiors. Energies. 2022;15:6105.
  12. Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensors node. Computer Comunications. 2013; 26(11): 1131:1144.
  13. Li J, Ouro-Koura H, Arnow H, Nowbahari A, Galarza M, Obispo M, Tong X, Azadmehr M, Hella MM, Tichy JA, Borca-Tascius DA. A Novel comb design for enhanced power and bandwidth in electro-static MEMS energy converters. IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). DOI: 10.1109/MEMS49605.2023.10052590
  14. Li J, Tichy J, Borca-Tascius DA. A predictive model for electrostatic energy harvesters with impact-based frequency up-conversion, Journal of Micromechanics and Microengineering. 2020; 30(12): 125012.
  15. Li J, Ouro-Koura H, Arnow H, Nowbahari A, Galarza M, Obispo M, Tong X, Azadmehr M, Halvorsen E, Hella MM, Tichy JA, Borca-Tascius DA. Broadband Vibration-based Energy harvesting for Wireless Sensor Applications using Frequency Up-conversion. Sensors. 2023; 23(11): 5296.
  16. Koszewnik A, Oldziej D. Performance assessment of an energy harvesting system located on a copter. European Physical Journa., Special Topics. 2019; 228: 1677–1692.
  17. Koszewnik A. Analytical Modeling and Experimental Validation of an Energy Harvesting System for the Smart Plate with an Integrated Piezo-Harvester. Sensors. 2019; 19(4): 812.
  18. Cahill P, Hazra B, Karoumi R, Mathewson A, Pakrashi V. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mechanical Systems and Signal Processing. 2018; 106: 265–283.
  19. Na WS, Baek J. Piezoelectric Impedance-Based Non-Destructive Testing Method for Possible Identification of Composite Debonding Depth. Micromachines 2019, 10: 621.
  20. O’Leary K, Pakrashi V, Kelliher D. Optimization of composite material tower for offshore wind turbine structures. Renewable Energy. 2019; 140: 928–942.
  21. Okosun F, Cahill P, Hazra B, Pakrashi V. Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors. European Physical Journal Special Topics. 2019; 228: 1659–1675.
  22. Koszewnik A. Experimental validation of equivalent circuit modeling of the piezo-stripe harvester attached to the SFSF rectangular plate. Acta Mechanica et Automatica. 2020; 14(1): 8-15.
  23. Cahill P, Ni Nuallain NA, Jackson N, Mathewson A, Karoumi R, Pakrashi V. Energy Harvesting from Train-Induced Response in Bridges. Journal of. Bridge Engineering 2014; 19: 04014034.
  24. Koszewnik A, Lesniewski K, Pakrashi V. Numerical Analysis and Experimental Verification of Damage Identification Metrics for Smart Beam with MFC elements to support structural health monitoring. Sensors. 2021; 21(20): 6796.
  25. Ambroziak L, Ołdziej D, Koszewnik A. Multirotor Motor Failure Detection with Piezo Sensor. Sensors. 2023; 23(2): 1048.
  26. Yang F, Gao M, Wang P, Zuo J, Dai J, Cong J. Efficient piezoelectric harvester for random broadband vibration of rail. Energy. 2021; 218: 119559.
  27. Zheng J, Dou B, Li Z, Wu T, Tian H, Cui G. Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect. Energies. 2020; 14(5): 1266.
  28. Wu Z, Xu Q. Design and Development of a Novel Two-Directional Energy Harvester with Single Piezoelectric Stack. IEEE Transaction and Industrial Electronics. 2021; 68: 1290–1298.
  29. Kan J, Zhang M, Wang S, Zhang Z, Zhu Y, Wang J. A cantilevered piezoelectric energy harvester excited by an axially pushed wedge cam using repulsive magnets for rotary motion. Smart Material and Structures. 2021; 30: 065009.
  30. Ju S, Ji Ch-H. Impact-based piezoelectric energy harvester. Applied Energy. 2018; 214: 139-151.
  31. Zhou W, Penamalli GR, Zuo L. An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Materials and Structures. 2012; 21: 015014.
  32. Caban J, Litak G, Ambrozkiewicz B, Wolszczak P, Gardynski L, Stączek P. Impact-based piezoelectric energy harvesting system excited from diesel engine suspension. Applied Computer Science. 2020; 16(3): 16-29.
  33. Peng Y, Xu Z, Wang, M, Li Z, Peng J, Luo J, Xie S, Pu H, Yang Z. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy. 2021; 172: 551–563.
  34. Wen S, Xu Q. Design of a Novel Piezoelectric Energy Harvester Based on Integrated Multistage Force Amplification Frame. IEEE/ASME Transaction Mechatronics. 2019; 24: 1228–1237.
  35. Hwang GT et al. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Advanced Energy Materials. 2016; 6(13): 1-9.
  36. Ramadoss A, Saravanakumar B, Lee SW, Kim YS, Kim SJ, Wang ZL. Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano. 2015; 9(4): 4337-4345.
  37. Gilshteyn EP et al. Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology. 2018; 29(32): 1-14.
  38. Pu X, Hu W, Wang ZL. Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small. 2018; 14(1): 1-19.
  39. Zhao H, Wei X, Zhong Y, Wang P. A direction Self-tuning two-dimensional piezoelectric vibration energy harvester. Sensors. 2020; 20(77): 1–13.
  40. Selleri G, Poli F, Neri R, Gasperini L, Gualandii Ch, Soavi F, Fabiani D. Energy harvesting and storage with ceramic piezoelectric transducers coupled with an ionic liquid-based supercapacitor. Journal of Energy Storage. 2023;60:106660.
  41. Koszewnik A. The influence of a slider gap in the beam-slider structure with an MFC element on energy harvesting from the system: experimental case. Acta Mechanicca. 2021;232: 819-833.
  42. Ma Y, Wang J, Lic Ch, Fu X. A micro-power generator based on Two Piezoelectric MFC Films. Crystals. 2021; 11(8): 861.
  43. Hu K, Li H. Large deformation mechanical modeling with bilinear stiffness for Macro-Fiber Composite bimorph based on extending mixing rules. Journal of Intelligent Material Systems and Structures. 2020; 1-13. DOI:10.1177/1045389X20951257
DOI: https://doi.org/10.2478/ama-2024-0026 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 223 - 232
Submitted on: Apr 7, 2023
Accepted on: Sep 17, 2023
Published on: Jun 26, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Andrzej Koszewnik, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.