Have a personal or library account? Click to login
Optimal System of 1-D Subalgebras and Conserved Quantities of A Nonlinear Wave Equation in Three Dimensions Arising in Engineering Physics Cover

Optimal System of 1-D Subalgebras and Conserved Quantities of A Nonlinear Wave Equation in Three Dimensions Arising in Engineering Physics

Open Access
|Jun 2024

Abstract

The construction of explicit structures of conserved vectors plays diverse crucial roles in the study of nonlinear science inclusive of the fact that they are invoked in developing appropriate numerical schemes and for other mathematical analyses. Therefore, in this paper, we examine the conserved quantities of a nonlinear wave equation, existing in three dimensions, and highlight their applications in physical sciences. The robust technique of the Lie group theory of differential equations (DEs) is invoked to achieve analytic solutions to the equation. This technique is used in a systematic way to generate the Lie point symmetries of the equation under study. Consequently, an optimal system of one-dimensional (1-D) Lie subalgebras related to the equation is obtained. Thereafter, we engage the formal Lagrangian of the nonlinear wave equation in conjunction with various gained subalgebras to construct conservation laws of the equation under study using Ibragimov’s theorem for conserved vectors.

DOI: https://doi.org/10.2478/ama-2024-0022 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 177 - 192
Submitted on: Mar 27, 2023
Accepted on: Jun 26, 2023
Published on: Jun 26, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Oke Davies Adeyemo, Chaudry Masood Khalique, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.