References
- Priya S, Inman DJ, editors. Energy Harvesting Technologies. Boston, MA: Springer US. 2009. https://doi.org/10.1007/978-0-387-76464-1
- Harb A. Energy harvesting: State-of-the-art. Renewable Energy. 2011 Oct 1;36(10):2641–54. http://dx.doi.org/10.1016/j.renene.2010.06.014
- Siang J, Lim M H., Salman Leong M. Review of vibration-based energy harvesting technology: Mechanism and architectural approach. International Journal of Energy Research. 2018 Jan 18; 42(5):1866–93. https://doi.org/10.1002/er.3986
- Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews. 2017 Jul 1;74:1–18. https://doi.org/10.1016/j.rser.2017.01.073
- Sun R, Zhou S, Cheng L. Ultra-low frequency vibration energy harvesting: Mechanisms, enhancement techniques, and scaling laws. Energy Conversion and Management. 2023 Jan 15;276:116585. https://doi.org/10.1016/j.enconman.2022.116585
- Brennan MJ, Tang B, Pechoto G, Lopes V. An investigation into the simultaneous use of a resonator as an energy harvester and a vibration absorber. Journal of Sound and Vibration. 2014 Feb 1;333(5):1331–43. https://doi.org/10.1016/j.jsv.2013.10.035
- Toyabur RM, Salauddin M, Cho H, Park JY. A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Conversion and Management. 2018 Jul 15;168:454–66. https://doi.org/10.1016/j.enconman.2018.05.018
- Wang X, Liang X, Wei H. A study of electromagnetic vibration energy harvesters with different interface circuits. Mechanical Systems and Signal Processing. 2015 Jun 1;58–59:376–98. https://doi.org/10.1016/j.ymssp.2014.10.004
- Wang X, Liang X, Hao Z, Du H, Zhang N, Qian M. Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits. Mechanical Systems and Signal Processing. 2016 May 1;72–73:906–24. https://doi.org/10.1016/j.ymssp.2015.10.016
- Shen W, Zhu S, Xu Y. An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors. Sensors and Actuators A: Physical. 2012 Jun 1;180:166–76. https://doi.org/10.1016/j.sna.2012.04.011
- Cai Q, Zhu S. Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: Concept and experiment validation. Mechanical Systems and Signal Processing. 2019 Dec 1;134:106339-9. https://doi.org/10.1016/j.ymssp.2019.106339
- Sapiński B, Orkisz P, Jastrzębski Ł. Experimental Analysis of Power Flows in the Regenerative Vibration Reduction System with a Magnetorheological Damper. Energies. 2021 Feb 6;14(4):848. http://dx.doi.org/10.3390/en14040848
- Jastrzębski Ł, Sapiński B. Magnetorheological Self-Powered Vibration Reduction System with Current Cut-Off: Experimental Investigation. Acta Mechanica et Automatica. 2018 Jun 1;12(2):96–100. https://doi.org/10.2478/ama-2018-0015
- Sapiński B. An experimental electromagnetic induction device for a magnetorheological damper. Journal of Theoretical and Applied Mechanics. 2008;46(4):933–47.
- Sapiński B. Vibration power generator for a linear MR damper. Smart Materials and Structures. 2010 Aug 6;19(10):105012. http://doi.org/10.1088/0964-1726/19/10/105012
- Kozieł A, Jastrzębski Ł, Sapiński B. Advanced Prototype of an Electrical Control Unit for an MR Damper Powered by Energy Harvested from Vibrations. Energies. 2022 Jun 21;15(13):4537. https://doi.org/10.3390/en15134537
- Texas Instruments, Technical documentation available online: https://www.ti.com/ (accessed on Jun 30, 2023).
- STMicroelectronics, Technical documentation available online: http://www.st.com/ (accessed on Jun 30, 2023).
- MR Damper, RD-8040-1, Technical documentation available online: http://www.lordfulfillment.com/upload/DS7016.pdf (accessed on Jun 30, 2023).
- Gołdasz J, Sapiński B, Jastrzębski Ł, Kubik M. Dual Hysteresis Model of MR Dampers. Frontiers in Materials. 2020 Oct 6; 7:236. https://doi.org/10.3389/fmats.2020.00236
- Choi SB, Li W, Yu M, Du H, Fu J, Do PX. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Materials and Structures 2016 Mar 14;25(4):043001. https://doi.org/10.1088/0964-1726/25/4/043001
- Karnopp D, Crosby MJ, Harwood RA. Vibration Control Using Semi-Active Force Generators. Journal of Engineering for Industry. 1974 May 1;96(2):619–26. https://doi.org/10.1115/1.3438373
- Sapiński B, Rosół M. MR damper performance for shock isolation. Journal of Theoretical and Applied Mechanics. 2007;45(1):133–45.
- Analog Devices, Technical documentation available online: https://www.analog.com/en/index.html (accessed on Jun 30, 2023).
- Thenozhi S, Yu W, Garrido R. A novel numerical integrator for velocity and position estimation. Transactions of the Institute of Measurement and Control. 2013 Aug 1;35(6):824–33. https://doi.org/10.1177/0142331213476987
- Arias-Lara D, De-la-Colina J. Assessment of methodologies to estimate displacements from measured acceleration records. Measurement. 2018 Jan 1;114:261–73. https://doi.org/10.1016/j.measurement.2017.09.019
- Hamming RW. Digital filters (3rd ed.). GBR: Prentice Hall International (UK) Ltd.; 1989. 284 p.
- Guo R, Ye S, Ji Y. Optimization Acceleration Integral Method Based on Power Spectrum Estimation. MATEC Web Conf. 2018;176:03012. https://doi.org/10.1051/matecconf/201817603012
- Han H, Park M, Park S, Kim J, Baek Y. Experimental Verification of Methods for Converting Acceleration Data in High-Rise Buildings into Displacement Data by Shaking Table Test. Applied Sciences 2019 Apr 21;9(8):1653-3. https://doi.org/10.3390/app9081653.
- Park KT, Kim SH, Park HS, Lee KW. The determination of bridge displacement using measured acceleration. Engineering Structures. 2005 Feb 1;27(3):371–8. https://doi.org/10.1016/j.engstruct.2004.10.013
- Yang Y, Zhao Y, Kang D. Integration on acceleration signals by adjusting with envelopes. Journal of Measurements in Engineering. 2016 Jun 30;4(2):117–21.
- Polytec, Technical documentation available online: https://www.polytec.com (accessed on Jun 30, 2023).