Have a personal or library account? Click to login

Friction Force Reduction Efficiency in Sliding Motion Under Tangential Vibrations of Elastic Support

Open Access
|Feb 2024

References

  1. Czon Y, Su H, Qian N, He J, Gu J, Xu J, et al. Ultrasonic vibration assisted grinding of silicone carbide ceramics based on actual amplitude measurement: grinding force and surface quality. Ceramics International. 2021;47(11): 15433–15441. https://doi.org/10.1016/j.ceramint.2021.02.109
  2. Gao G, Xia Z, Su T, Xiang D, Zhao B. Cutting force model of longitudinal–torsional ultrasonic-assisted milling Ti-6Al-4V based in tool flank wear. Journal of Materials Processing Technology. 2021; 291:117042. https://doi.org/10.1016/j.jmatprotec.2021.117042
  3. Jamshidi H, Nategh MJ. Theoretical and experimental investigation of the frictional behavior of the tool-chip interface in ultrasonic-vibration assisted turning. International Journal of Machine Tools and Manufacture. 2013;65:1–7. https://doi.org/10.1016/j.ijmachtools.2012.09.004
  4. Khajehzadeh M, Bootaripour O, Razfar MR. Finite element simulation and experimental investigation of residual stresses in ultrasonic assisted turning. Ultrasonics. 2020;108:106208. https://doi.org/10.1016/j.ultras.2020.106208
  5. Li D, Tang J, Czen H, Shao W. Study on grinding force model in ultrasonic vibration-assisted grinding alloy structural steel. The International Journal of Advanced Manufacturing Technology. 2019; 101:1467–1479. https://doi.org/10.1007/s00170-018-2929-2
  6. Liu Y, Geng D, Zhou Z, Jiang X, Zhang D. A study of on strengthening and machining integrated ultrasonic peening drilling of Ti-6Al-4V. Materials & Design. 2021; 212:110238. https://doi.org/10.1016/j.matdes.2021.110238
  7. Ning F, Cong W. Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of art and future perspectives. Journal of Manufacturing Processes. 2020;51:174–190. https://doi.org/10.1016/j.jmapro.2020.01.028
  8. Skeleton RC. Effect of ultrasonic vibration on the turning process. International Journal of Machine Tool Design and Research. 1969;9(4):363–374. https://doi.org/10.1016/0020-7357(69)90020-1
  9. Wang H, Pei ZJ, Cong W. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining. International Journal of Mechanical Sciences. 2020;176:105551. https://doi.org/10.1016/j.ijmecsci.2020.105551
  10. Wang J, Zhang J, Feng P, Guo P. Experimental and theoretical investigation of critical cutting force in rotary ultrasonic drilling of brittle materials and composites. International Journal of Mechanical Sciences. 2018;135:555–564. https://doi.org/10.1016/j.ijmecsci.2017.11.042
  11. Verma GC, Pandey PM. Machining forces in ultrasonic vibration assisted end milling. Ultrasonics. 2019;94:350–363. https://doi.org/10.1016/j.ultras.2018.07.004
  12. Aarsnes UJ, Di Meglio F, Shor RJ. Avoiding stick slip vibration in drilling through startup trajectory design. Journal of Process Control. 2018;70:24–35. https://doi.org/10.1016/j.jprocont.2018.07.019
  13. Barakat ER, Miska S, Mengjlao Y, Simonescu PA, Takch N. The effect of hydraulic vibrations on initiation of buckling and axial force transfer for helically buckled pipes at simulated horizontal wellbore conditions. Proc SPE/IADC Drill Conf Exhib, Amsterdam, The Netherlands, February 2007.
  14. Gee R, Hanley C, Hussain R, Cannel L, Martinez J. Axial oscillations tools vs. lateral vibration tools for friction reduction what’s the best way to shake the pipe. London: Society of Petroleum Engineers, March 2015.
  15. Long Y, Wang X, Wang P, Zhang F. A method of reducing friction and improving the penetration rate by safely vibrating the drill-string at surface. Processes. 2023; 11(4):1242. https://doi.org/10.3390/pr11041242
  16. Maidla E, Haci M, Jones S, Cluchy M, Alexander M, Warren T. Field proof of the new sliding technology for directionnal drilling. Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, February 2005.
  17. Roper NF, Dellinger TB. Reduction of frictional coefficient in borehole by use of vibration. 1983: US 4384625 1983-05-24.
  18. Skyles LP, Amiraslani YA, Wilhoit JE. Converting static friction to kinetic friction to drill further and faster in directional holes. Proceedings of the IDAC/SPE Drilling Conference and Exhibition. San Diego CA, USA, 6–8 March 2012.
  19. Qiu H, Yang J, Butt S. Investigation on bit stick-slip vibration with random friction coefficients. Journal of Petroleum Science and Engineering. 2018;164:127–139. https://doi.org/10.1016/j.petrol.2018.01.037
  20. Zhu X, Tang L, Yang Q. A literature review of approaches for stick-slip vibration suppression in oil well drill-string. Advances in Mechanical Engineering. 2014;6:967952. https://doi.org/10.1155/2014/967952
  21. Leus M, Gutowski P. The analysis of longitudinal contact vibration effect on friction force using Coulomb and Dahl models. Journal of Theoretical and Applied Mechanics. 2008; 46(1):171–84 [in Polish].
  22. Gutowski P, Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International. 2012; 55: 108–118. https://doi.org/10.1016/j.triboint.2012.05.023.
  23. Dahl PR. A solid friction model. Technical Report TOR-158(3107-18), The Aerospace Corporation, El Segundo, CA, 1968.
  24. Dahl PR. Solid friction damping of mechanical vibrations. AIAA Journal. 1976;14(12):1675–1682. https://doi.org/10.2514/3.61511.
  25. Dupont P, Armstrong B, Hayward V. Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Control Conference, Chicago, Illinois 2000:1072–1077. https://doi.org/10.1109/ACC.2000.876665.
  26. Dupont P, Hayward V, Armstrong B, Altpeter F. Single state elasto-plastic friction models. IEEE Transactions on Automatic Control. 2002; 47(5):787-792. https://doi.org/10.1109/TAC.2002.1000274.
  27. Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling wave ultrasonic motors. Ultrasonic. 2002;40:379–383. http://dx.doi.org/10.1016/S0041-624X(02)00126-9.
  28. Tsai CC, Tseng CH. The effect of friction reduction in presence of in-plane vibrations. Archive of Applied Mechanics. 2006;75:164–76. https://doi.org/10.1007/s00419-005-0427-0.
  29. Gutowski P, Leus M. Computational model for friction force estimation in sliding motion at transverse tangential vibrations of elastic contact support. Tribology International. 2015;90:455–462. https://doi.org/10.1016/j.triboint.2015.04.044.
  30. Gutowski P, Leus M. Computational model of friction force reduction at arbitrary direction of tangential vibrations and its experimental verification. Tribology International. 2020;143:106065. https://doi.org/10.1016/j.triboint.2019.106065.
  31. Godfrey D. Vibration reduces metal to metal contact causes an apparent reduction in friction. ASLE Transactions. 1967;10:183–192. https://doi.org/10.1080/05698196708972178.
  32. Hess DP, Soom A. Normal vibrations and friction under harmonic loads: part I – Hertzian contacts. Journal of Tribology. 1971;113:80–86. https://doi.org/10.1115/1.2920607.
  33. Tolstoi DM, Borisova GA, Grigorova SR. Friction regulation by perpendicular oscillation. Soviet Physics – Doklad. 1973;17(9):907–909.
  34. Canudas de Wit C, Olsson H, Astrom KJ, Lischynsky P. A new model for control of systems with friction. IEEE Transactions of Automatic Control. 1995;40(3):419-425. https://doi.org/10.1109/9.376053.
  35. Olsson H. Control systems with friction. Lund 1996.
  36. Bliman PA. Mathematical study of the Dahl’s friction model. European Journal of Mechanics, A/Solids. 1992;11(66):835–848.
DOI: https://doi.org/10.2478/ama-2024-0013 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 101 - 109
Submitted on: May 18, 2023
Accepted on: Jul 6, 2023
Published on: Feb 29, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mariusz Leus, Paweł Gutowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.