References
- Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level. 2021.
- Gibbins J, Chalmers H. Carbon capture and storage. Energy Policy. 2008;36(12):4317–22. Available from: http://dx.doi.org/10.1016/j.enpol.2008.09.058
- De Coninck H, Stephens JC, Metz B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy. 2009;37(6):2161–5. Available from: http://dx.doi.org/10.1016/j.enpol.2009.01.020
- Zhao L, Zhao R, Deng S, Tan Y, Liu Y. Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture. Int J Greenhouse Gas Control. 2014;31:77–86. Available from: http://dx.doi.org/10.1016/j.ijggc.2014.09.025
- Jiang L, Wang RQ, Gonzalez-Diaz A, Smallbone A, Lamidi RO, Roskilly AP. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl Therm Eng. 2020;169(114973):114973. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2020.114973
- Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: A review. Energy (Oxf). 2012;46(1):431–41. Available from: http://dx.doi.org/10.1016/j.energy.2012.08.006
- Zhao R, Deng S, Liu Y, Zhao Q, He J, Zhao L. Carbon pump: Fundamental theory and applications. Energy (Oxf). 2017;119:1131–43. Available from: http://dx.doi.org/10.1016/j.energy.2016.11.076
- Lian Y, Deng S, Li S, Guo Z, Zhao L, Yuan X. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry. Int J Greenhouse Gas Control. 2019;85:187–98. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.029
- He J, Deng S, Zhao L, Zhao R, Li S. A numerical analysis on energy-efficiency performance of temperature swing adsorption for CO 2 capture. Energy Procedia. 2017;142:3200–7. Available from: http://dx.doi.org/10.1016/j.egypro.2017.12.490
- Wang YN, Pfotenhauer JM, Zhi XQ, Qiu LM, Li JF. Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture. Int J Heat Mass Transf. 2018;127:339–47. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.068
- Lee S-Y, Park S-J. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11. Available from: http://dx.doi.org/10.1016/j.jiec.2014.09.001
- Younas M, Sohail M, Leong LK, Bashir MJK, Sumathi S. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol (Tehran). 2016;13(7):1839–60. Available from: http://dx.doi.org/10.1007/s13762-016-1008-1
- Mondino G, Grande CA, Blom R, Nord LO. Evaluation of MBTSA technology for CO2 capture from waste-to-energy plants. Int J Greenhouse Gas Control. 2022;118(103685):103685. Available from: http://dx.doi.org/10.1016/j.ijggc.2022.103685
- Kadambi JR. Principles of gas–solid flows by L.-S. Fan and C. Zhu, Cambridge University Press, 1998; p. 557. Int J Multiph Flow. 2001;27(5):947–8. Available from: http://dx.doi.org/10.1016/s0301-9322(00)00072-0
- Wang J, Yuan X, Deng S, Zeng X, Yu Z, Li S, et al. Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2 capture: a route to a closed carbon loop. Green Chem. 2020;22(20):6836–45. Available from: http://dx.doi.org/10.1039/d0gc01613f
- Bahrehmand H, Bahrami M. An analytical design tool for sorber bed heat exchangers of sorption cooling systems. Int J Refrig. 2019;100:368–79. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2019.02.003
- Golparvar B, Niazmand H, Sharafian A, Ahmadian Hosseini A. Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system. Appl Energy. 2018;232:504–16. Available from: http://dx.doi.org/10.1016/j.apenergy.2018.10.002
- Zhang LZ. A three-dimensional non-equilibrium model for an intermittent adsorption cooling system. Sol Energy. 2000;69(1):27–35. Available from: http://dx.doi.org/10.1016/s0038-092x(00)00010-4
- Clausse M, Bonjour J, Meunier F. Adsorption of gas mixtures in TSA adsorbers under various heat removal conditions. Chem Eng Sci. 2004;59(17):3657–70. Available from: http://dx.doi.org/10.1016/j.ces.2004.05.027
- Hofer G, Fuchs J, Schöny G, Pröll T. Heat transfer challenge and design evaluation for a multi-stage temperature swing adsorption process. Powder Technol . 2017;316:512–8. Available from: http://dx.doi.org/10.1016/j.powtec.2016.12.062
- Pirklbauer J, Schöny G, Pröll T, Hofbauer H. Impact of stage configurations, lean-rich heat exchange and regeneration agents on the energy demand of a multistage fluidized bed TSA CO2 capture process. Int J Greenhouse Gas Control. 2018;72:82–91. Available from: http://dx.doi.org/10.1016/j.ijggc.2018.03.018
- Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. Int J Greenhouse Gas Control. 2019;85:58–70. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.021
- Schöny G, Dietrich F, Fuchs J, Pröll T, Hofbauer H. A Multi-Stage Fluidized Bed System for Continuous CO2 Capture by Means of Temperature Swing Adsorption – First Results from Bench Scale Experiments. Powder Technology 2007,316:519–27. Available from: https://doi.org/10.1016/j.powtec.2016.11.066.
- Mitra S, Muttakin M, Thu K, Saha BB. Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics. Appl Therm Eng. 2018;133:764–73. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2018.01.015
- Hofer G, Schöny G, Fuchs J, Pröll T. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process. Fuel Process Technol. 2018;169:157–69. Available from: http://dx.doi.org/10.1016/j.fuproc.2017.09.024
- Sharafian A, McCague C, Bahrami M. Impact of fin spacing on temperature distribution in adsorption cooling system for vehicle A/C applications. Int J Refrig. 2015;51:135–43. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2014.12.003
- Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. SSRN Electron J. 2019; Available from: http://dx.doi.org/10.2139/ssrn.3366315
- Zima W, Grądziel G, Cebula A, Rerak M, Kozak-Jagieła E, Nord LO, et al. Mathematical Model of a Power Boiler Operation Under Rapid Load Changes, PRES’21 0484 Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. Vol. 1. Brno, CZ; 2021.
- Mondino G, Grande CA, Blom R. Effect of gas recycling on the performance of a moving bed temperature-swing (MBTSA) process for CO2 capture in a coal fired power plant context. Energies. 2017;10(6):745. http://dx.doi.org/10.3390/en10060745
- Zhao B, Wang X, Xu Y, Liu B, Cao S, Zhao Q. Reduction of dust deposition in air-cooled condensers in thermal power plants by Ni–P-based coatings. Clean Technol Environ Policy. 2021;23(6):1727–36. Available from: http://dx.doi.org/10.1007/s10098-021-02055-6
- Taler D. A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int J Therm Sci. 2016;108:108–22. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.04.022
- Filonienko GK. Friction factor for turbulent pipe flow. Teploenergetika. 1954;40–4.
- Majchrzak A. Testowanie i optymalizacja stałych sorbentów do usuwania CO2 ze spalin, PhD thesis. 2017.
- Mondino G, Nord LO, Grande CA, Arstad B, Plassen M, Håkonsen S, et al. Initial operation of a continuous lab-scale MBTSA pilot using activated carbon adsorbent. SSRN Electron J. 2021; Available from: http://dx.doi.org/10.2139/ssrn.3812354