Have a personal or library account? Click to login

References

  1. Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level. 2021.
  2. Gibbins J, Chalmers H. Carbon capture and storage. Energy Policy. 2008;36(12):4317–22. Available from: http://dx.doi.org/10.1016/j.enpol.2008.09.058
  3. De Coninck H, Stephens JC, Metz B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy. 2009;37(6):2161–5. Available from: http://dx.doi.org/10.1016/j.enpol.2009.01.020
  4. Zhao L, Zhao R, Deng S, Tan Y, Liu Y. Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture. Int J Greenhouse Gas Control. 2014;31:77–86. Available from: http://dx.doi.org/10.1016/j.ijggc.2014.09.025
  5. Jiang L, Wang RQ, Gonzalez-Diaz A, Smallbone A, Lamidi RO, Roskilly AP. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl Therm Eng. 2020;169(114973):114973. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2020.114973
  6. Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: A review. Energy (Oxf). 2012;46(1):431–41. Available from: http://dx.doi.org/10.1016/j.energy.2012.08.006
  7. Zhao R, Deng S, Liu Y, Zhao Q, He J, Zhao L. Carbon pump: Fundamental theory and applications. Energy (Oxf). 2017;119:1131–43. Available from: http://dx.doi.org/10.1016/j.energy.2016.11.076
  8. Lian Y, Deng S, Li S, Guo Z, Zhao L, Yuan X. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry. Int J Greenhouse Gas Control. 2019;85:187–98. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.029
  9. He J, Deng S, Zhao L, Zhao R, Li S. A numerical analysis on energy-efficiency performance of temperature swing adsorption for CO 2 capture. Energy Procedia. 2017;142:3200–7. Available from: http://dx.doi.org/10.1016/j.egypro.2017.12.490
  10. Wang YN, Pfotenhauer JM, Zhi XQ, Qiu LM, Li JF. Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture. Int J Heat Mass Transf. 2018;127:339–47. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.068
  11. Lee S-Y, Park S-J. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11. Available from: http://dx.doi.org/10.1016/j.jiec.2014.09.001
  12. Younas M, Sohail M, Leong LK, Bashir MJK, Sumathi S. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol (Tehran). 2016;13(7):1839–60. Available from: http://dx.doi.org/10.1007/s13762-016-1008-1
  13. Mondino G, Grande CA, Blom R, Nord LO. Evaluation of MBTSA technology for CO2 capture from waste-to-energy plants. Int J Greenhouse Gas Control. 2022;118(103685):103685. Available from: http://dx.doi.org/10.1016/j.ijggc.2022.103685
  14. Kadambi JR. Principles of gas–solid flows by L.-S. Fan and C. Zhu, Cambridge University Press, 1998; p. 557. Int J Multiph Flow. 2001;27(5):947–8. Available from: http://dx.doi.org/10.1016/s0301-9322(00)00072-0
  15. Wang J, Yuan X, Deng S, Zeng X, Yu Z, Li S, et al. Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2 capture: a route to a closed carbon loop. Green Chem. 2020;22(20):6836–45. Available from: http://dx.doi.org/10.1039/d0gc01613f
  16. Bahrehmand H, Bahrami M. An analytical design tool for sorber bed heat exchangers of sorption cooling systems. Int J Refrig. 2019;100:368–79. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2019.02.003
  17. Golparvar B, Niazmand H, Sharafian A, Ahmadian Hosseini A. Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system. Appl Energy. 2018;232:504–16. Available from: http://dx.doi.org/10.1016/j.apenergy.2018.10.002
  18. Zhang LZ. A three-dimensional non-equilibrium model for an intermittent adsorption cooling system. Sol Energy. 2000;69(1):27–35. Available from: http://dx.doi.org/10.1016/s0038-092x(00)00010-4
  19. Clausse M, Bonjour J, Meunier F. Adsorption of gas mixtures in TSA adsorbers under various heat removal conditions. Chem Eng Sci. 2004;59(17):3657–70. Available from: http://dx.doi.org/10.1016/j.ces.2004.05.027
  20. Hofer G, Fuchs J, Schöny G, Pröll T. Heat transfer challenge and design evaluation for a multi-stage temperature swing adsorption process. Powder Technol . 2017;316:512–8. Available from: http://dx.doi.org/10.1016/j.powtec.2016.12.062
  21. Pirklbauer J, Schöny G, Pröll T, Hofbauer H. Impact of stage configurations, lean-rich heat exchange and regeneration agents on the energy demand of a multistage fluidized bed TSA CO2 capture process. Int J Greenhouse Gas Control. 2018;72:82–91. Available from: http://dx.doi.org/10.1016/j.ijggc.2018.03.018
  22. Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. Int J Greenhouse Gas Control. 2019;85:58–70. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.021
  23. Schöny G, Dietrich F, Fuchs J, Pröll T, Hofbauer H. A Multi-Stage Fluidized Bed System for Continuous CO2 Capture by Means of Temperature Swing Adsorption – First Results from Bench Scale Experiments. Powder Technology 2007,316:519–27. Available from: https://doi.org/10.1016/j.powtec.2016.11.066.
  24. Mitra S, Muttakin M, Thu K, Saha BB. Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics. Appl Therm Eng. 2018;133:764–73. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2018.01.015
  25. Hofer G, Schöny G, Fuchs J, Pröll T. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process. Fuel Process Technol. 2018;169:157–69. Available from: http://dx.doi.org/10.1016/j.fuproc.2017.09.024
  26. Sharafian A, McCague C, Bahrami M. Impact of fin spacing on temperature distribution in adsorption cooling system for vehicle A/C applications. Int J Refrig. 2015;51:135–43. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2014.12.003
  27. Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. SSRN Electron J. 2019; Available from: http://dx.doi.org/10.2139/ssrn.3366315
  28. Zima W, Grądziel G, Cebula A, Rerak M, Kozak-Jagieła E, Nord LO, et al. Mathematical Model of a Power Boiler Operation Under Rapid Load Changes, PRES’21 0484 Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. Vol. 1. Brno, CZ; 2021.
  29. Mondino G, Grande CA, Blom R. Effect of gas recycling on the performance of a moving bed temperature-swing (MBTSA) process for CO2 capture in a coal fired power plant context. Energies. 2017;10(6):745. http://dx.doi.org/10.3390/en10060745
  30. Zhao B, Wang X, Xu Y, Liu B, Cao S, Zhao Q. Reduction of dust deposition in air-cooled condensers in thermal power plants by Ni–P-based coatings. Clean Technol Environ Policy. 2021;23(6):1727–36. Available from: http://dx.doi.org/10.1007/s10098-021-02055-6
  31. Taler D. A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int J Therm Sci. 2016;108:108–22. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.04.022
  32. Filonienko GK. Friction factor for turbulent pipe flow. Teploenergetika. 1954;40–4.
  33. Majchrzak A. Testowanie i optymalizacja stałych sorbentów do usuwania CO2 ze spalin, PhD thesis. 2017.
  34. Mondino G, Nord LO, Grande CA, Arstad B, Plassen M, Håkonsen S, et al. Initial operation of a continuous lab-scale MBTSA pilot using activated carbon adsorbent. SSRN Electron J. 2021; Available from: http://dx.doi.org/10.2139/ssrn.3812354
DOI: https://doi.org/10.2478/ama-2024-0012 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 93 - 100
Submitted on: Feb 28, 2023
Accepted on: Jul 6, 2023
Published on: Jan 5, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Ewa Kozak-Jagieła, Monika Rerak, Wiesław Zima, Artur Cebula, Sławomir Grądziel, Giorgia Mondino, Richard Blom, Lars O. Nord, Vidar T. Skjervold, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.