Have a personal or library account? Click to login
Effectiveness of Friction Force Reduction in Sliding Motion Depending on the Frequency of Longitudinal Tangential Vibrations, Sliding Velocity and Normal Pressure Cover

Effectiveness of Friction Force Reduction in Sliding Motion Depending on the Frequency of Longitudinal Tangential Vibrations, Sliding Velocity and Normal Pressure

Open Access
|Aug 2023

References

  1. Gutowski P, Leus M. Computational model for friction force estimation in sliding motion at transverse tangential vibrations of elastic contact support. Tribology International. 2015;90:455-462. https://doi.org/10.1016/j.triboint.2015.04.044
  2. Gutowski P, Leus M. Computational model of friction force reduction at arbitrary direction of tangential vibrations and its experimental verification. Tribology International. 2020;143:106065. https://doi.org/10.1016/j.triboint.2019.106065
  3. Gutowski P, Leus M. Estimation of the tangential transverse vibrations effect on the friction force with the use of LuGre model. Acta Mechanica. 2021;232(10):3849-3861. https://doi.org/10.1007/s00707-021-03033-1
  4. Gutowski P, Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International. 2012;55:108-118. https://doi.org/10.1016/j.triboint.2012.05.023
  5. Leus M. Investigation of the longitudinal tangential contact vibrations influence on the friction force. Doctoral thesis. 2010.
  6. Leus M, Gutowski P. Practical possibilities of utilization of tangential longitudinal vibrations for controlling the friction force and reduction of drive force in sliding motion. Mechanics and Mechanical Engineering. 2011;15(4):103-113.
  7. Rybkiewicz M, Gutowski P, Leus M. Experimental and numerical analysis of stick-slip suppression with the use of longitudinal tangential vibration. Journal of Theoretical and Applied Mechanics. 2020;58(3):637-648. https://doi.org/10.15632/jtam-pl/116594
  8. Rybkiewicz M, Leus M. Selection of the friction model for numerical analyses of the impact of longitudinal vibration on stick-slip movement. Advances in Science and Technology Research Journal. 2021;15(3):277-287. https://doi.org/10.12913/22998624/141184
  9. Gao H, De Volder M, Cheng T, Bao G, Reynaerts D. A pneumatic actuator based on vibration friction reduction with bending longitudinal vibration mode. Sensors and Actuators A: Physical. 2016;252:112-119. https://doi.org/10.1016/j.sna.2016.10.039
  10. Kapelke S, Seemann W. On the effect of longitudinal vibrations on dry friction: Modelling aspects and experimental investigations. Tribology Letters. 2018;66(3):1-11. https://doi.org/10.1007/s11249-018-1031-0
  11. Kapelke S, Seemann W, Hetzler H. The effect of longitudinal high-frequency in-plane vibrations on a 1-DoF friction oscillator with compliant contact. Nonlinear Dynamics. 2017;88:3003-3015. https://doi.org/10.1007/s11071-017-3428-y
  12. Kumar VC, Hutchings IM. Reduction of sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribology International. 2004;37(10):833-40. https://doi.org/10.1016/j.triboint.2004.05.003
  13. Kutomi H, Sase N, Fujii H. Development of friction controller. Proceedings of the International Conf AMPT’99. 1999;I:605-612.
  14. Littmann W, Stork H, Wallaschek J. Reduction of friction using piezoelectrically excited ultrasonic vibrations. Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Material, Billingham, Washington 2001. 2001;302-311. https://doi.org/10.1117/12.432714
  15. Littmann W, Stork H, Wallaschek J. Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Archive of Applied Mechanics. 2001;71:549-54. https://doi.org/10.1007/s004190100160
  16. Liu W, Ni H, Wang P, Zhao B. Analytical investigation of the friction reduction performance of longitudinal vibration based on the modified elastoplastic contact model. Tribology International. 2020;146: 106237. https://doi.org/10.1016/j.triboint.2020.106237
  17. Qu H, Zhou N, Guo W, Qu J. A model of friction reduction with in-plane high-frequency vibration. Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology. 2016;230(8):962-967. https://doi.org/10.1177/135065011562101
  18. Sase N, Kurahashi T, Fujii M, Kutomi H, Fujii H. Control of friction coefficient between metal surfaces. Proceedings of the International Conference AMPT’97. 1997;2:609-615.
  19. Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling wave ultrasonic motors. Ultrasonic. 2002;40:379-383. http://dx.doi.org/10.1016/S0041-624X(02)00126-9
  20. Teidelt E, Starcevic J, Popov VL. Influence of ultrasonic oscillation on static and sliding friction. Tribology Letters. 2012;48:51-62. https://doi.org//10.1007/s11249-012-9937-4
  21. Tsai CC, Tseng CH. The effect of friction reduction in presence of in-plane vibrations. Archive of Applied Mechanics. 2006;75:164-76. https://doi.org/10.1007/s00419-005-0427-0
  22. Wang P, Ni H, Wang R, Li Z, Wang Y. Experimental investigation of the effect of in-plane vibrations on friction for different materials. Tribology International. 2016;99:237-247. https://doi.org/10.1016/j.triboint.2016.03.021
  23. Wang P, Ni H, Wang R, Liu W, Lu S. Research on the mechanism of in-plane vibration on friction reduction. Materials. 2017;10(9):1-21. https://doi.org/10.3390/ma10091015
  24. Yang CL, Wu CS, Shi L. Analysis of friction reduction effect due to ultrasonic vibration exerted in friction stir welding. Journal of Manufacturing Processes. 2018;35:118-126. https://doi.org/10.1016/j.jmapro.2018.07.025
  25. Shao G, Li H, Zhan M. A Review on Ultrasonic-Assisted Forming: Mechanism, Model, and Process. Chinese Journal of Mechanical Engineering. 2021;34(1):99. https://doi.org/10.1186/s10033-021-00612-0
  26. Chovdhury MA, Helali MM. The effect of frequency of vibration and humidity on the coefficient of friction. Tribology International. 2006; 39(9):958-962. https://doi.org/10.1016/j.triboint.2005.10.002
  27. Chovdhury MA, Helali MM. The effect of amplitude of vibration on the coefficient of friction for different materials. Tribology International. 2008;41(4):307-314. https://doi.org/10.1016/j.triboint.2007.08.005
  28. Hess DP, Soom A. Normal vibrations and friction under harmonic loads: part I – Hertzian contacts. Journal of Tribology. 1991;113(1): 80-86. https://doi.org/10.1115/1.2920607
  29. Popov M, Popov VL, Popov NV. Reduction of friction by normal oscillations. I. Influence of contact stiffness. Friction. 2017;5(1):45-55. https://doi.org/10.1007/s40544-016-0136-4
  30. Xinyu M, Popov VL, Stracevic J, Popov M. Reduction of friction by normal oscillations. II. In-plane system dynamics. Friction. 2017;5(2): 194-206. https://doi.org/10.1007/s40544-017-0146-x
  31. Cheng Y, Zhu PZ, Li R. The influence of vertical vibration on nanoscale friction: a molecular dynamics simulation study. Crystals. 2018;8(3):129. https://doi.org/10.3390/cryst8030129
  32. Dahl PR. A solid friction model. Technical Report TOR-158(3107-18), The Aerospace Corporation, El Segundo, CA. 1968.
  33. Dahl PR. Solid friction damping of mechanical vibrations. AIAA Journal. 1976;14(12):1675-1682. https://doi.org/10.2514/3.61511
  34. Dupont P, Armstrong B, Hayward V. Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Control Conference, Chicago, Illinois 2000. 2000:1072-1077. https://doi.org/10.1109/ACC.2000.876665
  35. Dupont P, Hayward V, Armstrong B, Altpeter F. Single state elasto-plastic friction models. IEEE Transactions on Automatic Control. 2002;47(5):787-792. https://doi.org/10.1109/TAC.2002.1000274
  36. Leus M, Gutowski P. The experimental analysis of the tangential stiffness of the flat contact joints. Modelling in Engineering. 2009; 6(37):185-192 [in Polish].
DOI: https://doi.org/10.2478/ama-2023-0057 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 490 - 498
Submitted on: Dec 1, 2022
Accepted on: May 4, 2023
Published on: Aug 17, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Mariusz Leus, Paweł Gutowski, Marta Rybkiewicz, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.