Have a personal or library account? Click to login

Material Characteristic of an Innovative Stent for the Treatment of Urethral Stenosis

Open Access
|Jul 2023

References

  1. Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J. Nanobiotechnology. 2022;20(392):1–23. https://doi.org/10.1186/s12951-022-01599-z
  2. Xu K, Han Y, Huang Y, Wei P, Yin J, Jiang J. The application of 3D bioprinting in urological diseases. Mater. Today Bio. 2022;16 (100388):1–17. doi: 10.1016/j.mtbio.2022.100388
  3. Verla W, Oosterlinck W, Spinoit AF, Waterloos M. A Comprehensive Review Emphasizing Anatomy, Etiology, Diagnosis, and Treatment of Male Urethral Stricture Disease. BioMed Res. Int. 2019;2019: 9046430:1–20. doi: 10.1155/2019/9046430
  4. Lazzeri M, Sansalone S, Guazzoni G, Barbagli G. Incidence, Causes, and Complications of Urethral Stricture Disease. Eur. Urol. Suppl. 2016;15(1):2–6. 10.1016/j.eursup.2015.10.002
  5. Yao HJ, Wei ZW, Wan X, Tao YC, Zhang DC, Wang Z, Xie MK. Three new experimental models of anterior urethral stricture in rabbits. Transl. Androl. Urol. 2022;11(6):761–772. doi: 10.21037/tau-22-104
  6. Klekiel T, Mackiewicz A, Kaczmarek-Pawelska A, Skonieczna J, Kurowiak J, Piasecki T, Noszczyk-Nowak A, Będziński R. Novel design of sodium alginate based absorbable stent for the use in urethral stricture disease. J. Mater. Res. Technol. 2020;9(4):9004–9015. https://doi.org/10.1016/j.jmrt.2020.06.047
  7. Kurowiak J, Mackiewicz A, Klekiel T, Będzński R. Evaluation of Selected Properties of Sodium Alginate-Based Hydrogel Material-Mechanical Strength, µDIC Analysis and Degradation. Materials. 2022;15(3):1–15. https://doi.org/10.3390/ma15031225
  8. Mackiewicz A, Klekiel T, Kurowiak J, Piasecki T, Będziński R. Determination of Stent Load Conditions in New Zealand White Rabbit Urethra. J. Funct. Biomater. 2020;11(4):1–9. https://doi.org/10.3390/jfb11040070
  9. Farzamfar S, Elia E, Chabaud S, Naji M, Bolduc S. Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int. J. Mol. Sci. 2022;23(18):1–37. https://doi.org/10.3390/ijms231810519
  10. Basikn LS, Constantinescu SC, Howard PS, Mcaninch JW, Ewalt DH, Duckett JW, Snyder HM, Macarak EJ. Biomechanical characterization and quantitation of the collagenous components of urethral stricture tissue. J. Urol. 1993;150:642–647. 10.1016/s0022-5347(17)35572-6
  11. Goel A, Goel A, Jain A, Singh BP. Management of panurethral strictures. Indian J. Urol. 2011;27(3):378–384. 10.4103/0970-1591.85443
  12. Mundy AR, Andrich DE. Urethral strictures. BJU International. 2010;107(1):6–26. doi: 10.1111/j.1464-410X.2010.09800.x.
  13. Engel O, Soave A, Rink M, Fisch M. Reconstructive Management with Urethroplasty. European Association of Urology. 2016;15(1):13–16. 10.1016/j.eursup.2015.10.004
  14. Pudełko P. Rekonstrukcja cewki moczowej - uretroplastyka/Reconstruction of the urethroplasty. Przegląd Urologiczny. 2016;96.
  15. Pastorek D, Culenova M, Csobonyeiova M, Skuciova V, Danisovic L, Ziaran S. Tissue Engineering of the Urethra: From Bench to Bedside. Biomedicines. 2021:9(12):1–12. 10.3390/biomedicines9121917
  16. Cheng L, Li S, Wan Z, Huang B, Lin J. A brief review on anterior urethral strictures, Asian J Uro. 2018;5(2):88–93. 10.1016/j.ajur.2017.12.005
  17. Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Będziński R. Analysis of the Degradation Process of Alginate-Based Hydrogels in Artificial Urine for Use as a Bioresorbable Material in the Treatment of Urethral Injuries. Processes. 2020;8(3):1–11. https://doi.org/10.3390/pr8030304
  18. Cunnane EM, Davis N, Cunnane CV, Lorentz KL, Ryan AJ, Hess J, Weinbaum JS, Walsh MT, O’Brien FJ, Vorp DA. Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials. 2021;269(120651):1–31. 10.1016/j.biomaterials.2021.120651
  19. Li G, Li Y, Lan P, Li J, Zhao Z, He X, Zhang J, Hu H. Biodegradable weft-knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation. J. Biomed. Mater. Res. Part A. 2014;102(4):982–990. https://doi.org/10.1002/jbm.a.34759
  20. Loskot J, Jezbera D, Zmrhalová ZO, Nalezinková M, Alferi D, Lelkes A, Voda P, Andrýs R, Myslivcová-Fučiková A, Hosszŭ T, Bezrouk A. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on Raman Spectroscopy Validation. Polymers. 2022;14(5):1–19. https://doi.org/10.3390/polym14050938
  21. Zilberman M, Eberhart RC. Drug-Eluting Bioresorbable Stents for Various Applications. Annu. Rev. Biomed. Eng. 2006;8:153–180. https://doi.org/10.1146/annurev.bioeng.8.013106.151418
  22. Zhang W, Kanwal F, Fayyaz M, Rehman UR, Wan X. Efficacy of Biodegradable Polydioxanone and Polylactic Acid Braided Biodegradable Biliary Stents for the Management of Benign Biliary Strictures. Turk J Gastroenterol. 2021;32(8):651–660. 10.5152/tjg.2021.201174
  23. Kwon C, Son JS, Kim KS, Moon JP, Park S, Jeon J, Kim G, Choi SH, Ko KH, Jeong S, Lee DH. Mechanical properties and degradation process of biliary self-expandable biodegradable stents. Dig Endosc. 2021;33(7):1158–1169. doi: 10.1111/den.13916
  24. Bezrouk A, Hosszu T, Hromadko L, Olmrova-Zmrhalova Z, Kopecek M, Smutny M, Krulichova IS, Macak JM, Kremlacek J. Mechanical properties of a biodegradable self-expandable polydioxanone mono-filament stent: In vitro force relaxation and its clinical relevance. PLOS ONE. 2020;15(7):1–16. https://doi.org/10.1371/journal.pone.0235842
  25. Adolfsson KH, Sjőberg I, Hőglund OV, Wattle O, Hakkarainen M. In Vivo Versus In Vitro Degradation of a 3D Printed Resorbable Device for Ligation of Vascular Tissue in Horses. Macromol. Biosci. 2021;21(10):1–12. https://doi.org/10.1002/mabi.202100164
  26. Saska S, Pilatti L, Santos de Sousa Silva E, Nagasawa MA, Câmara D, Lizier N, Inger E, Dyszkiewicz-Konwińska M, Kempisty B, Tunchel S, Blay A, Shibil JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers. 2021;13(11):1–16. https://doi.org/10.3390/polym13111685
  27. Fathi P, Capron G, Tripathi I, Misra S, Ostadhossein F, Selmic L, Rowitz B, Pan D. Computed Tomography-Guided Additive Manufacturing of Personalized Absorbable Gastrointestinal Stents for Intestinal Fistulae and Perforations. Biomaterials. 2020,228(119542):1–36. doi: 10.1016/j.biomaterials.2019.119542
  28. Park JH, Song HY, Shin JH, Kim JH, Jun EJ, Cho YC, Kim SH, Park J. Polydioxanone Biodegradable Stent Placement in a Canine Urethral Model: Analysis of Inflammatory Reaction and Biodegradation. J Vasc Interv Radiol. 2014;25(8):1257–1264. 10.1016/j.jvir.2014.03.023
  29. Stehlik L, Hytych V, Letackova J, Kubena P, Vasakova M. Biodegradable polydioxanone stents in the treatment of adult patients with tracheal narrowing. BMC Pulm. Med. 2015;15(164):1–8 10.1186/s12890-015-0160-6
  30. Zamiri P, Kuang Y, Sharma U, Ng TF, Busold RH, Rago AP, Core LA, Palasis M. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials. 2010;31(31):7847–7855. 10.1016/j.biomaterials.2010.06.057
  31. Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Baldy-Chudzik K, Mazurek-Popczyk J, Zaręba Ł, Klekiel T, Będziński R. Changes in the Mechanical Properties of Alginate-Gelatin Hydrogels with the Addition of Pygeum africanum with Potential Application in Urology. Int. J. Mol. Sci. 2022;23(18):1–16. https://doi.org/10.3390/ijms231810324
  32. Chutipongtanate S, Thongboonnkerd V. Systematic comparisons of artificial urine formulas for in vitro cellular study, Anal. Biochem. 2010;402(1):110–112. 10.1016/j.ab.2010.03.031
  33. Gil-Castell O, Badia JD, Bou J, Ribes-Greus A. Performance of Polyester-Based Electrospun Scaffolds under In Vitro Hydrolytic Conditions: From Short-Term to Long-Term Applications. Nano-materials. 2019;9(5):1–19. https://doi.org/10.3390/nano9050786
  34. Zhao F, Sun J, Xue W, Wang F, King MW, Yu C, Jiao Y, Sun K, Wang L. Development of a polycaprolactone/poly(p-dioxanone) bioresorbable stent with mechanically self-reinforced structure for congenital heart disease treatment, Bioact. Mater. 2021;6(9):2969–2982. https://doi.org/10.1016/j.bioactmat.2021.02.017
  35. Tian Y, Zhang J, Cheng J, Wu G, Zhang Y, Ni Z, Zhao G. A poly(L-lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J. Appl. Polym. Sci. 2020;138(2):1–8. https://doi.org/10.1002/app.49656
  36. Conderman C, Kinzinger M, Manuel C, Protsenko D, Wong BJF. Mechanical analysis of cartilage graft reinforced with PDS plate. Laryngoscope. 2013;123(2):339–343. doi: 10.1002/lary.23571
  37. Loskot J, Jezbera D, Bezrouk A, Doležal R, Andrýs R, Francová V, Miškář D, Myslivcová-Fučiková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. Materials. 2021;14(18):1–16. https://doi.org/10.3390/ma1
DOI: https://doi.org/10.2478/ama-2023-0055 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 477 - 484
Submitted on: Feb 24, 2023
Accepted on: May 3, 2023
Published on: Jul 16, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jagoda Kurowiak, Agnieszka Mackiewicz, Tomasz Klekiel, Romuald Będziński, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.