References
- Painleve P. Sur les équationsdifférentielles du second ordre et d’ordresupérieurdontl’intégralegénéraleestuniforme. Acta mathematica. 1902 Dec;25:1-85.
- Borisov AV, Kudryashov NA. Paul Painlevé and his contribution to science. Regular and Chaotic Dynamics. 2014 Feb;19:1-9.
- Segur H, Ablowitz MJ. Asymptotic solutions of nonlinear evolution equations and a Painlevé transcedent. Physica D: Nonlinear Phenomena. 1981 Jul 1;3(1-2):165-84.
- Kanna T, Sakkaravarthi K, Kumar CS, Lakshmanan M, Wadati M. Painlevé singularity structure analysis of three component Gross– Pitaevskii type equations. Journal of mathematical physics. 2009 Nov 25;50(11):113520.
- Cao X, Xu C. ABäcklund transformation for the Burgers hierarchy. InAbstract and Applied Analysis 2010 Jan 1 (Vol. 2010). Hindawi.
- Lee SY, Teodorescu R, Wiegmann P. Viscous shocks in Hele–Shaw flow and Stokes phenomena of the Painlevé I transcendent. Physica D: Nonlinear Phenomena. 2011 Jun 15;240(13):1080-91.
- Dai D, Zhang L. On tronquée solutions of the first Painlevé hierarchy. Journal of Mathematical Analysis and Applications. 2010 Aug 15;368(2):393-9.
- ]Florjańczyk M, Gagnon L. Exact solutions for a higher-order nonlinear Schrödinger equation. Physical Review A. 1990 Apr 1;41(8):4478.
- Ablowitz MJ, Segur H. Solitons and the inverse scattering transform. Society for Industrial and Applied Mathematics; 1981 Jan 1.
- Tajiri M, Kawamoto S. Reduction of KdV and cylindrical KdV equations to Painlevé equation. Journal of the Physical Society of Japan. 1982 May 15;51(5):1678-81.
- Dehghan M, Shakeri F. The numerical solution of the second Painlevé equation. Numerical Methods for Partial Differential Equations: An International Journal. 2009 Sep;25(5):1238-59.
- Clarkson PA. Special polynomials associated with rational solutions of the fifth Painlevé equation. Journal of computational and applied mathematics. 2005 Jun 1;178(1-2):111-29.
- El-Gamel M, Behiry SH, Hashish H. Numerical method for the solution of special nonlinear fourth-order boundary value problems. Applied Mathematics and Computation. 2003 Dec 25;145(2-3):717-34.
- Ellahi R, Abbasbandy S, Hayat T, Zeeshan A. On comparison of series and numerical solutions for second Painlevé equation. Numerical Methods for Partial Differential Equations. 2010 Sep;26(5): 1070-8.
- Gromak VI, Laine I, Shimomura S. Painlevé differential equations in the complex plane. InPainlevé Differential Equations in the Complex Plane 2008 Aug 22. de Gruyter.
- Bobenko AI, Eitner U, editors. Painlevé equations in the differential geometry of surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000 Dec 12.
- Dehghan M, Shakeri F. The numerical solution of the second Painlevé equation. Numerical Methods for Partial Differential Equations: An International Journal. 2009 Sep;25(5):1238-59.
- Saadatmandi A. Numerical study of second Painlevé equation. Comm. Numer. Anal. 2012;2012.
- Sierra-Porta D, Núnez LA. On the polynomial solution of the first Painlevé equation. Int. J. of Applied Mathematical Research. 2017;6(1):34-8.
- Ahmad H, Khan TA, Yao S. Numerical solution of second order Painlevé differential equation. Journal of Mathematics and Computer Science. 2020;21(2):150-7.
- Izadi M. An approximation technique for first Painlevé equation.
- Khan ZH, Khan WA. N-transform properties and applications. NUST journal of engineering sciences. 2008 Dec 31;1(1):127-33.
- Belgacem FB, Silambarasan R. Theory of natural transform. Math. Engg. Sci. Aeros. 2012 Feb 25;3:99-124.
- Spiegel MR. Laplace transforms. New York: McGraw-Hill; 1965.
- Belgacem FB, Karaballi AA. Sumudu transform fundamental properties investigations and applications. International Journal of Stochastic Analysis. 2006;2006.
- Maitama S, Hamza YF. An analytical method for solving nonlinear sine-Gordon equation. Sohag Journal of Mathematics. 2020;7(1):5-10.
- Elbadri M, Ahmed SA, Abdalla YT, Hdidi W. A new solution of time-fractional coupled KdV equation by using natural decomposition method. InAbstract and Applied Analysis 2020 Sep 1 (Vol. 2020, pp. 1-9). Hindawi Limited.
- Maitama S, Kurawa SM. An efficient technique for solving gas dynamics equation using the natural decomposition method. InInternational Mathematical Forum 2014 (Vol. 9, No. 24, pp. 1177-1190). Hikari, Ltd..
- Amir M, Awais M, Ashraf A, Ali R, Ali Shah SA. Analytical Method for Solving Inviscid Burger Equation. Punjab University Journal of Mathematics. 2023 Dec 3;55(1).
- Behzadi SS. Convergence of iterative methods for solving Painlevé equation. Applied Mathematical Sciences. 2010;4(30):1489-507.
- Hesameddini E, Peyrovi A. The use of variational iteration method and homotopy perturbation method for Painlevé equation I. Applied Mathematical Sciences. 2009;3(37-40):1861-71.
- Behzadi SS. Convergence of iterative methods for solving Painlevé equation. Applied Mathematical Sciences. 2010;4(30):1489-507.