Have a personal or library account? Click to login

Adaptation and Application of a Polarisation Curve Test Protocol for a Commercial Pem Electrolyser on Cell and Stack Level

Open Access
|Jul 2023

References

  1. Der Sozialdemokratischen Partei Deutschlands (SPD). BÜNDNIS 90/DIE GRÜNEN und den Freien Demokraten, Koalitionsvertrag 2021 – 2025: mehr fortschritt wagen Bündnis für Freiheit Gerechtigkeit und Nachhaltigkeit. 2021
  2. European Commission. Hydrogen: The EU’s hydrogen strategy explores the potential for renewable hydrogen to help decarbonise the EU in a cost-effective way [Internet]. 2022 [cited 2022 Nov 06]; Available from: https://ec.europa.eu/info/index_en
  3. Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Standen E. Study on development of water electrolysis in the EU: Fuel Cells and hydrogen Joint Undertaking. 2014
  4. Lettenmeier P. Entwicklung und Integration neuartiger Komponenten für Polymerelektrolytmembran- (PEM) Elektrolyseure [PhD Dissertation]. Stuttgart: Fakultät Energie-, Verfahrens- und Biotechnik der Universität Stuttgart. 2018
  5. Abomazid AM, El-Taweel NA, Farag HEZ. Novel Analytical Approach for Parameters Identification of PEM Electrolyzer. IEEE Transactions on Industrial Informatics. Sept. 2022; 18(9): 5870-5881. doi: 10.1109/TII.2021.3132941
  6. Selamet ÖF, Acar MC, Mat MD, Kaplan Y. Effects of operating parameters on the performance of a high-pressure proton exchange membrane electrolyzer. Int. J. Energy Res. 2013; 37: 457–467. https://doi.org/10.1002/er.2942
  7. Smolinka T, Ojong E, Garche J. Hydrogen Production from Renewable Energies—Electrolyzer Technologies. Electrochemical Energy Storage for Renewable Sources and Grid Balancing. Elsevier; 2015. DOI 10.1016/B978–0–444–62616–5.00008–5.
  8. Tjarks G. H, Stolten D, Wessling M. PEM-Elektrolyse-Systeme zur Anwendung in Power-to-Gas Anlagen. Forschungszentrum Julich GmbH, Zentralbibliothek (Schriften des Forschungszentrums Julich / Reihe Energie & Umwelt: Reihe Energie & Umwelt). 2017. – ISBN 9783958062177
  9. Bender G, Carmo M, Smolinka T, Gago A, Danilovic N, Mueller M, Ganci F, Fallisch A, Lettenmeier P, Friedrich K A, Ayers K, Pivovar B, Mergel J, Stolten D. Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers. International Journal of Hydrogen Energy. 2019; 44: 9174–9187. https://doi.org/10.1016/j.ijhydene.2019.02.074
  10. European European Commission, Joint Research Centre, Tsotridis G, Pilenga A. EU harmonized protocols for testing of low temperature water electrolysis. Publications Office of the European Union; 2021. Available from: doi/10.2760/58880
  11. Malkow T, Pilenga A, Tsotridis G, De Marco G. EU harmonised polarisation curve test method for low-temperature water electrolysis. Publications Office of the European Union; 2018. Available from: doi:10.2760/179509
  12. Godula-Jopek, A. Hydrogen production By electrolysis. Weinheim: Wiley-VCH-Verl., 2015
  13. Mori M, Mržljak T, Drobnič B, Sekavčnik M. Integral Characteristics of Hydrogen Production in Alkaline Electrolysers. Strojniski Vestnik. Aug 2013; 59(10):585-594. doi: 10.5545/sv-jme.2012.858
  14. Espinosa-López M, Darras C, Poggi P, Glises R, Baucour P, Rakotondrainibe A, Besse S, Serre-Combe P. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renewable Energy. 2018; 119: 160–173. https://doi.org/10.1016/j.renene.2017.11.081
  15. Bensmann, B. Systemanalyse der Druckwasser-Elektrolyse im Kontext [PhD Dissertation]. Magdeburg: Fakultät für Verfahrens- und Systemtechnik der Otto-von-Guericke-Universität Magdeburg. 2017
  16. Feng Q, Yuan X, Liu G, Wei B, Zhang Z, Li H, Wang H. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. Journal of Power Sources. 2017; 366: 33–55. https://doi.org/10.1016/j.jpowsour.2017.09.006
  17. Bernt M. Analysis of Voltage Losses and Degradation Phenomena in PEM Water Electrolyzers [PhD Dissertation]. Munich: Fakultät für Chemie der Technischen Universität München. 2018
  18. Amores E, Rodríguez J, Oviedo, Lucas-Consuegra A. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects. Open Engineering. 2017; 7(1)1: 41–152. doi: 10.1515/eng–2017–0020
  19. Bitter R, Mohiuddin T, Nawrocki M. LabVIEW: Advanced programming techniques. Crc Press; 2006
  20. Stähler M, Stähler A, Scheepers F, Carmo M, Lehnert W, Stolten D. Impact of porous transport layer compression on hydrogen permeation. PEM water electrolysis. 2020; 45(7): 4008-4014.
  21. Merwe J. Characterisation of a proton exchange membrane electrolyser using electrochemical impedance spectroscopy [PhD Dissertation]. Potchefstroom: School of Electrical, Electronic and Computer Engineering North-West University. 2012
  22. Bessarabov D, Millet P. PEM Water Electrolysis [Internet]. 1th ed. Elsevier; 2018. Chapter 2, Key Performance Indicators; [cited 2022 Sep 30]. pp. 33–60. Available from: https://www.elsevier.com/books/pem-water-electrolysis/pollet/978-0-08-102830-8
  23. Siracusano S, Trocino S, Briguglio N, Baglio V, Aricò AS. Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials (Basel). 2018; 11(8):1368. doi: 10.3390/ma11081368
DOI: https://doi.org/10.2478/ama-2023-0045 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 395 - 404
Submitted on: Nov 11, 2022
Accepted on: Mar 4, 2023
Published on: Jul 11, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Nicol Daniela Jaramillo Rodríguez, Aline Luxa, Lars Jürgensen, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.