Have a personal or library account? Click to login

Stability Investigation of the PCM Nanocomposites

Open Access
|Jul 2023

References

  1. Haghighi EB, Nikkam N, Saleemi M, Behi M, Mirmohammadi MA, Poth H, et al. Shelf stability of nanofluids and its effect on thermal conductivity and viscosity. Measurement Science and Technology. 2013;24;105301.
  2. Lotfizadeh Dehkordi B., Ghadimi A., Metselaar H.S.C. Box–Behnken experimental design for investigation of stability and thermal conductivity of TiO2 nanofluids. Journal of Nanoparticle Research. 2013;15:1369.
  3. Witharana S., Palabiyik I., Musina Z., Ding Y. Stability of glycol nanofluids — The theory and experiment. Powder Technology. 2013;239:72–77.
  4. Ilyas S.U., Pendyala R., Marneni N. Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures. Procedia Engineering. 2016;148:290–297.
  5. Fuskele V., Sarviya R.M. Recent developments in Nanoparticles Synthesis. Preparation and Stability of Nanofluids. Materials Today: Proceedings. 2017;4:4049–4060.
  6. Yu F, Chen Y, Liang X, Xu J, Lee C, Liang Q, et al. Dispersion stability of thermal nanofluids. Progress in Natural Science: Materials International. 2017;27:531-542.
  7. Abdullah M, Malik SA, Iqbal MH, Sajid MM, Shad NA, Hussain SZ, et al. Sedimentation and stabilization of nano-fluids with dispersant. Colloids and Surfaces. 2018;554;86–92.
  8. Mahbubul IM, Elcioglu EB, Amalina MA, Saidur R. Stability, thermophysical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technology. 2019;345:668–675.
  9. Lee L, Han K, Koo J. A novel method to evaluate dispersion stability of nanofluids. International Journal of Heat and Mass Transfer. 2014;70;421–429.
  10. Lemes MA, Rabelo D, de Oliveira AE. A novel method to evaluate nanofluid stability using multivariate image analysis. Analytical Methods. 2017;9;5826.
  11. Ilyas SU, Pendyala R, Marneni N. Stability of nanofluids. Topics in Mining, Metallurgy and Materials Engineering. Eds. Korada VS, Hamid NHB. Engineering applications of nanotechnology. From energy to drug delivery. Springer;2017. Avaiable from: https://www.springerprofessional.de/engineering-applications-of-nanotechnology/11992454
  12. Wu S, Zhu D, Zhang X, Huang J. Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM). Energy Fuels. 2010; 24(3):1894–1898.
  13. Choi DH, Lee J, Hong H, Kang Y T. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration. 2014;42:112-120.
  14. Jin Y, Wan Q, Ding Y. PCMs Heat Transfer Performance Enhancement with Expanded Graphite and its Thermal Stability. Procedia Eng. 2015;102:1877-1884
  15. Zhichao L, Qiang Z, Gaohui W. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material. International Journal of Heat and Mass Transfer. 2015;80;653–659.
  16. Nourani M, Hamdami N, Keramat J, Moheb A, Shahedi M. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renewable Energy. 2016;88:474-482.
  17. Liu Y, Yang Y. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Solar Energy Materials & Solar Cells. 2017;160;18–25.
  18. Singh DK, Suresh S, Singh H, Rose BAJ, Tassou S, Anantharaman N. Myo-inositol based nano-PCM for solar thermal energy storage. Applied Thermal Engineering. 2017;110;564–572.
  19. Zhang JL, Wu N, Wu XW, Chen Y, Zhao Y, Liang JF, et al. High latent heat stearic acid impregnated in expanded graphite. Thermochimica Acta. 2018;663;118–124.
  20. Nourani M, Hamdami N, Keramat J. Preparation and evaluation of a stable nanoalumina-paraffin composite: Melting rate investigation using image analysis. Journal of Dispersion Science and Technology. 2018;39(10);1385-1393.
  21. Prabhu B, ValanArasu A. Stability analysis of TiO2–Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems. Renewable Energy. 2020;152;358-367.
  22. Ibrahim SI, Ali AA., Hafidh SA, Chaichan MT, Kazem HA, Ali JM, Isahak WNR, Alamiery A. Stability and thermal conductivity of different nano-composite material prepared for thermal energy storage applications. South African Journal of Chemical Engineering. 2022;39;72-89.
  23. Zhang G, Guo Y, Zhang B, Yan X, Lu W, Cui G, Du Y. Preparation and control mechanism of nano-phase change emulsion with high thermal conductivity and low supercooling for thermal energy storage. Energy Reports. 2022;8;8301-8311.
  24. Venkateshwar K, Joshy N, Simha H, Mahmud S. Quantifying the nanoparticles concentration in nano-PCM. Journal of Nanoparticle Research. 2019;21;260.
  25. Saydam V, Duan X. Dispersing Different Nanoparticles in Paraffin Wax as Enhanced Phase Change Materials – A Study on the Stability Issue. Journal of Thermal Analysis and Calorimetry. 2018;135(1):
  26. Lee W, Yeop J, Heo J, Yoon YJ, Park SY, Jeong J, et al. High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports. 2020;10:18055.
  27. Rajendran D, Ramalingame R, Adiraju A, Nouri H, Kanoun O. Role of Solvent Polarity on Dispersion Quality and Stability of Functionalized Carbon Nanotubes. Journal of Composites Science. 2022;6(1):26
  28. Saroha J, Mehra S, Kumar M, Sharma SN. Thermo-physical properties of paraffin/TiO2 and sorbitol/TiO2 nanocomposites for enhanced phase change materials: a study on the stability issue. Applied Physics A. 2021;127:916.
DOI: https://doi.org/10.2478/ama-2023-0043 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 381 - 389
Submitted on: Sep 21, 2022
Accepted on: Mar 19, 2023
Published on: Jul 11, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Janusz T. Cieśliński, Paulina Boroń, Maciej Fabrykiewicz, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.